Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T01:50:39.587Z Has data issue: false hasContentIssue false

Variation of axial and radial temperature in an expanded thermal plasma jet

Published online by Cambridge University Press:  15 January 2010

B. BORA
Affiliation:
Centre of Plasma Physics, Sonapur 782 402, Assam, India
M. KAKATI
Affiliation:
Thermal Plasma Processed Materials Laboratory, Department of Physics, Dibrugarh University, Dibrugarh, Assam 786 004, India ([email protected])
A. K. DAS
Affiliation:
Laser and Plasma Technology Division, BARC, Mumbai 400 085, India

Abstract

The distribution of temperature in an expanded thermal plasma jet is investigated by modified Langmuir probes. The validation of classical probe theory in the entire experimental chamber pressure range of 10–100 mbar is thoroughly established before the measurements. The average temperature of the plasma jet at the nozzle exit was also measured by calorimetric estimation of total heat loss from the plasma upstream of that point. A correlation is made using simple analytical expression in between the average temperature measured from the heat loss data and the centerline temperature at the nozzle exit measured by Langmuir probe. The profile parameter n for the radial distribution of temperature in a plasma jet is calculated for different operating current and gas flow rates.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kakati, M. and Das, A. K. 2009 New Nanotechniques. (ed. Malik, A. and Rawat, R. J.). New York: Nova Publishers, pp. 1.Google Scholar
[2]Han, Z., Xu, B., Wang, H. and Zhou, S. 2007 Surf. Coat. Technol. 201, 5253.CrossRefGoogle Scholar
[3]Han, P. and Chen, X. 2001 Thin Solid Films 390, 181.CrossRefGoogle Scholar
[4]Tahara, H., Ando, Y. and Yoshikawa, T. 2003 IEEE Trans. Plasma Sci. 31, 281.CrossRefGoogle Scholar
[5]Groot, B. de., Ahmad, Z., Dahiya, R. P., Engeln, R., Goedheer, W. J., Cardoza, N. J. L. and Veremiyenko, V. 2003 Fusion Eng. Des. 66–68, 413.CrossRefGoogle Scholar
[6]van den Oever, P. J., van Helden, J. H., Lamers, C. C. H., Engein, R., Schram, D. C., van de Sanden, M. C. M. and Kessels, W. M. M. 2005 J. Appl. Phys. 98, 093 301.CrossRefGoogle Scholar
[7]Rao, N., Girshick, S., Heberlein, J., McMurry, P., Jones, S., Hansen, D. and Micheel, B. 1995 Plasma Chem. Plasma Process 15 (4), 581.CrossRefGoogle Scholar
[8]Kakati, M., Bora, B., Sarma, S., Sripathi, T., Deshpande, U., Dubey, A., Ghosh, G. and Das, A. K. 2008 Vacuum 82, 833.CrossRefGoogle Scholar
[9]Meulenbroeks, R. F. G., Engeln, R. A. H., Beurskens, M. N. A., Paffen, R. M. J., van de Sanden, M. C. M. and van der Mullen, J. A. M. 1995 Plasma Sources Sci. Technol. 4, 74.CrossRefGoogle Scholar
[10]Selezneva, S. E., Rajabian, M., Gravelle, D. and Boulos, M. I. 2001 J.Phys. D: Appl. Phys. 34, 2862.CrossRefGoogle Scholar
[11]van den Oever, P. J., van Hemmen, J. L., van Helden, J. H., Schram, D. C., Engeln, R., van de Sanden, M. C. M. and Kessels, W. M. M. 2005 Plasma Sources Sci. Technol. 15, 546.CrossRefGoogle Scholar
[12]Han, P. and Chen, X. 2001 Thin Solid Films 390, 181.CrossRefGoogle Scholar
[13]Gindrat, M., Dorier, J. L., Hollenstein, C., Refke, A. and Barbezat, G. 2004 Plasma Sources Sci. Technol. 13, 484.CrossRefGoogle Scholar
[14]Gindrat, M. 2004 Characterization of supersonic low pressure plasma jet. Ph.D. Thesis, Centre de Recherches en Physique des Plasmas, Switzerland, p. 41.Google Scholar
[15]Chen, F. F. 1965 Plasma Diagnostic Techniques. (ed. Huddlestone, R. H. and Leonard, S. L.) New York: Academic Press, pp. 113.Google Scholar
[16]Joshi, N. K., Sahasrabudhe, S. N., Sreekumar, K. P. and Venkatramani, N. 1997 Meas. Sci. Technol. 8, 1146.CrossRefGoogle Scholar
[17]Ghorui, S., Sahasrabudhe, S. N., Murthy, P. S. S. and Das, A. K. 2006 Plasma Sources Sci. Technol. 15, 689694.CrossRefGoogle Scholar