Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:54:36.463Z Has data issue: false hasContentIssue false

Two-dimensional self-modulation of a whistler wave propagating along the magnetic field in a plasma

Published online by Cambridge University Press:  13 March 2009

V. I. Karpman
Affiliation:
Institute for Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Moscow Region 142092, USSR
H. Washimi
Affiliation:
Institute for Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Moscow Region 142092, USSR

Abstract

Two-dimensional nonlinear self-modulations of a high-frequency whistler wave propagating along an applied magnetic field in a plasma are investigated. We derive new, fairly broad, regions of modulational instabilities in directions oblique to the initial wave propagation with growth rates much greater than in the case of ‘parallel’ self-modulation. The largest growth rate appears to be for the angles corresponding to the parametric instabilities. Nonlinear solutions describing the envelope solitons propagating obliquely to the initial wave are also discussed. Our results are in qualitative agreement with recent experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Galeev, A. A. & Sagdeev, R. Z. 1973 Voprosy Teorii Plasmy. Atomizdat, Moscow.Google Scholar
Gurovich, V. T. & Karpman, V. I. 1969 Zh. Eksp. Teor. Fiz. 56, 1952. [English translation: Soviet Phyd. JETP 29, 1048 (1969).]Google Scholar
Hasegawa, A. 1970 Phys. Rev. A, 1746.Google Scholar
Hasegawa, A. 1972 Phys. Fluids, 15, 870.CrossRefGoogle Scholar
Karpman, V. I. 1975 Nonlinear Waves in Dispersive Media. Pergamon.Google Scholar
Karpman, V. I. & Krushkal, E. M. 1968 Zh. Eksp. Teor. Fiz. 55, 530. [English translation: Soviet Phys. JETP 28, 277 (1969).]Google Scholar
Litvak, A. G. 1969 Zh. Eksp. Teor. Fiz. 57, 629 [English translation: Soy. Phys. JETP, 30, 344 (1970).]Google Scholar
Motz, H. & Watson, C. J. 1967 Adv. Electronics Electron Phys. 23, p. 168.Google Scholar
Nishikawa, K., Mima, K. & Ikezi, H. 1974 Phys. Rev. Lett. 33, 148.CrossRefGoogle Scholar
Nozaki, K. & Taiuti, T. 1973 J. Phys. Soc. Japan, 34, 796.CrossRefGoogle Scholar
Ohsawa, Y. & Nozaki, K. 1974 J. Phys. Soc. Japan, 36, 591.Google Scholar
Stenzel, R. L. 1975 Phys. Rev. Lett. 35, 574.CrossRefGoogle Scholar
Stenzel, R. L. 1976 Geophys. Rev. Lett. 3, 61.CrossRefGoogle Scholar
Taniuti, T. & Washimi, H. 1968 Phys. Rev. Lett. 21, 209.CrossRefGoogle Scholar
Taniuti, T. & Washimi, H. 1969 Phys. Rev. Lett. 22, 454, 752.Google Scholar
Vedenov, A. A., Gordeev, A. V. & Rudakov, L. I. 1967 Plasma Phys. 9, 719.CrossRefGoogle Scholar
Washimi, H. 1973 J. Phys. Soc. Japan, 34, 1373.CrossRefGoogle Scholar
Washimi, H. 1976 J. Phys. Soc. Japan. (To be published.)Google Scholar
Washimi, H. & Karpman, V. I. 1976 Zh. Eksp. Teor. Fiz. 71, 1010 (to be translated in JETP).Google Scholar