Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T19:38:29.615Z Has data issue: false hasContentIssue false

Turbulent ‘polarization’ terms and the Balescu–Lenard operator

Published online by Cambridge University Press:  13 March 2009

John A. Krommes
Affiliation:
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08544
Michael T. Kotschenreuther
Affiliation:
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08544

Extract

Certain unfamiliar terms in renormalized plasma turbulence theory are interpreted in terms of the familiar physics of the Balescu–Lenard collision operator. Specifically, it is argued that the so-called polarization parts of the operator which renormalizes the particle propagator are related to fluctuations of the Fokker–Planck coefficient which describes polarization drag, and to fluctuations of the effective dielectric function of the medium.

Type
Articles
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1960 Phys. Fluids, 3, 52.CrossRefGoogle Scholar
Baus, M. 1973 Physica, 66, 421.CrossRefGoogle Scholar
Boutros-Ghali, T. & Dupree, T. H. 1981 Phys. Fluids, 24, 1839.CrossRefGoogle Scholar
Boley, C. D. 1974 Ann. Phys. (N.Y.), 86, 91.CrossRefGoogle Scholar
DuBois, D. F. 1981 Phys. Rev, A 23, 865.CrossRefGoogle Scholar
DuBois, D. F. & Espedal, M. 1978 Plasma Phys. 20, 1209.CrossRefGoogle Scholar
Dupree, T. H. 1972 Phys. Fluids, 15, 334.CrossRefGoogle Scholar
Hinton, F. L. 1970 Phys. Fluids, 13, 857.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics: A Statistical Approach. Benjamin.Google Scholar
Jensen, R. V. 1981 J. Stat. Phys., 25, 183.CrossRefGoogle Scholar
Krommes, J. A. 1975 Ph.D. Thesis, Princeton University.Google Scholar
Krommes, J. A. 1978 Theoretical and Computational Plasma Physics, p. 405. IAEA.Google Scholar
Krommes, J. A. 1979 a Princeton Plasma Physics Laboratory Report No. PPPL–1605.Google Scholar
Krommes, J. A. 1979 b Intrinsic Stochasticity in Plasmas, p. 193. Editions do PhysiqueGoogle Scholar
Krommes, J. A. 1980 Princeton Plasma Physics Laboratory Report No. PPPL–1568.Google Scholar
Krommes, J. A. & Kleva, R. G. 1979 Phys. Fluids, 22, 2168.CrossRefGoogle Scholar
Krommes, J. A. & Oberman, C. 1976 a J. Plasma Phys. 16, 193.CrossRefGoogle Scholar
Krommes, J. A. & Oberman, C. 1976 b J. Plasma Phys., 16, 229.CrossRefGoogle Scholar
Krommes, J. A. & Similon, P. 1980 Phys. Fluids, 23, 1553.CrossRefGoogle Scholar
Landau, L. D. 1937 Soviet Phys. JETP, 7, 2031.Google Scholar
Lenard, A. 1960 Ann. Phys. (N.Y.), 3, 390.CrossRefGoogle Scholar
Martin, P. C., Siggia, E. D. & Rose, H. A. 1973 Phys. Rev. A 8, 423.CrossRefGoogle Scholar
Mori, H. 1965 Progr. Theor. Phys, 33, 423.CrossRefGoogle Scholar
Rose, H. A. 1979 J. Stat. Phys. 20, 415.CrossRefGoogle Scholar
Rostoker, N. 1961 Nucl. Fusion, 1, 101.CrossRefGoogle Scholar
Rostoker, N. 1964 a Phys. Fluids, 7, 479.CrossRefGoogle Scholar
Rostoker, N. 1964 b Phys. Fluids, 7, 491.CrossRefGoogle Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. Benjamin.Google Scholar
Similon, P. 1981 Ph.D. Thesis, Princeton University.Google Scholar
Similon, P. & Krommes, J. A. 1980 Bull. Am. Phys. Soc., 25, 1034.Google Scholar
Tsytovich, V. N. 1970 Nonlinear Effects in Plasma. Plenum.CrossRefGoogle Scholar
Williams, E. A. 1973 Ph.D. Thesis, Princeton University.Google Scholar