Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T00:36:01.805Z Has data issue: false hasContentIssue false

Transverse MHD shock waves in a partly ionized plasma. Part 2. Shock structure in hydrogen

Published online by Cambridge University Press:  13 March 2009

C. D. Mathers
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia

Abstract

The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients developed in Part 1. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1–10 in hydrogen plasma with initial degree of ionization ranging from 5–100%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banks, P. 1966 Planet. Space Sci. 14, 1105.CrossRefGoogle Scholar
Bates, D. R., Kingston, A. E. & Mowhirter, R. W. P. 1962 a Proc. Roy. Soc. A 267, 297.Google Scholar
Bates, D. R., Kingston, A. E. & Mcwhirter, R. W. P. 1962 b Proc. Roy. Soc. A 270, 155.Google Scholar
Bighel, L., Collins, A. R. & Cramer, N. F. 1977 J. Plasma Phys. 18, 77.Google Scholar
Bighel, L. & Howard, J. 1978 Phys. Lett. 69 A, 39.Google Scholar
Boyd, T. J. M. & Dalgarno, A. 1958 Proc. Phys. Soc. (Lond.) A 72, 694.Google Scholar
Collins, A. R. & Mathers, C. D. 1978 Phys. Fluids, 21, 1939.CrossRefGoogle Scholar
Cramer, N. F. 1975 J. Plasma Phys. 14, 333.Google Scholar
Cross, R. C. & Blackwell, B. D. 1978 Aust. J. Phys. 31, 61.CrossRefGoogle Scholar
Cross, R. C. & Mathers, C. D. 1979 J. Plasma Phys. 21, 151.Google Scholar
Devoto, R. S. 1968 J. Plasma Phys. 2, 617.CrossRefGoogle Scholar
Drawin, H. & Felenbok, P. 1965 Data for Plasmas in Local Thermodynamic Equilibrium. Gauthier-Villars.Google Scholar
Duman, E. L. & Smirnov, B. M. 1974 High Temp. 12, 431.Google Scholar
Fite, W. L., Brackman, R. T. & Snow, W. R. 1958 Phys. Rev. 112, 1161.Google Scholar
Fite, W. L., Stebbings, R. F., Hummer, D. C. & Brackman, R. T. 1960 Phys. Rev. 119, 663.Google Scholar
Fite, W. L., Smith, A. C. H. & Stebbings, R. F. 1962 Proc. Roy. Soc. A 268, 527.Google Scholar
Gear, C. W. 1971 Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall.Google Scholar
Howard, J. 1978 Plasma Physics Report 78/8, School of Physics, University of Sydney.Google Scholar
Jaffrin, M. Y. 1965 Phys. Fluids, 8, 606.Google Scholar
Mathers, C. D. & Cramer, N. F. 1978 Aust. J. Phys. 31, 171.Google Scholar
Mathers, C. D. 1980 J. Plasma Phys. 24, 103.Google Scholar
Mitchner, M. & Kruger, C. H. 1973 Partially Ionized Gases. Wiley.Google Scholar
Shanmugasundaram, V. & Murty, S. S. R. 1978 J. Plasma Phys. 20, 419.Google Scholar
Yos, J. M. 1963 Avco Corporation Technical Memorandum RAD-TM-63–7, Massachusetts.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. 1. Academic.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1967 Physics of Schock Waves and High Temperature Hydrodynamic Phenomena, vol. 2. Academic.Google Scholar