Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T13:30:07.186Z Has data issue: false hasContentIssue false

Transport coefficients of partially ionized hydrogen

Published online by Cambridge University Press:  13 March 2009

R. S. Devoto
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, Californis, and Institut für Plasmaphysik, Garching bei München, Germany

Abstract

Transport coefficients have been computed for partially ionized hydrogen at pressures of 0·01, 0·1, 1 and 10 atm and temperatures up to 50,000 °K. Theoretical expressions containing accurate collision integrals for charged particles were employed for the calculations. The electrical and thermal conductivities are compared with recent measurements in the wall-stabilized electric arc. Generally satisfactory agreement is noted for the electrical conductivity to 19,000 °K, but the computed thermal conductivity is considerably lower than that measured.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bates, D. R., Kingston, A. E. & McWhirter, R. W. P. 1962 Proc. Roy. Soc. A 270, 155.Google Scholar
Bates, D. R., Ledsham, K. & Stewart, A. L. 1953 Phil. Trans. A 246, 215.Google Scholar
Belov, V. A. 1967 High Temperature 5, 31.Google Scholar
Brezing, D. 1965 AIAA J. 3, 1422.CrossRefGoogle Scholar
Burhorn, F. & Wienecke, R. 1960 Z. Phys. Chemie 215, 285.CrossRefGoogle Scholar
Burke, P. G., Shey, H. M. & Smith, K. 1963 Phys. Rev. 129, 1258.CrossRefGoogle Scholar
Burke, P. G. & Smith, K. 1962 Rev. Mod. Phys. 34, 458.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1958 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Dalgarno, A. 1958 Phil. Trans. A 250, 426.Google Scholar
Devoto, R. S. 1966 Phys. Fluids 9, 1230.CrossRefGoogle Scholar
Devoto, R. S. 1967 a Phys. Fluids 10, 354.CrossRefGoogle Scholar
Devoto, R. S. 1967 b Phys. Fluids 10, 2105.CrossRefGoogle Scholar
Devoto, R. S. 1967 c Phys. Fluids 10, 2704.CrossRefGoogle Scholar
Devoto, R. S. 1968 AIAA J. (to be published).Google Scholar
Devoto, R. S. & Li, C. P. 1968 J. Plasma Physics 2, 17.CrossRefGoogle Scholar
Gould, H. A. & Dewitt, H. E. 1967 Phys. Rev. 155, 68.CrossRefGoogle Scholar
Griem, H. R. 1964 Plasma Spectroscopy. New York: McGraw-Hill.Google Scholar
Grier, N. T. 1962 NASA TND-1406.Google Scholar
Grier, N. T. 1966 NASA TN D-3186.Google Scholar
Hasted, J. B. 1964 Physics of Atom Collisions. London: Butterworths.Google Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. F. 1964 Molecular Theory of Gases and Liquids. New York: John Wiley and Sons.Google Scholar
Kaneko, S. 1962 J. Phys. Soc. Japan 17, 390.CrossRefGoogle Scholar
Kolos, W. & Wolniewicz, L. 1965 J. Chem. Phys. 43, 2429.CrossRefGoogle Scholar
Landshoff, R. 1951 Phys. Rev. 82, 442.CrossRefGoogle Scholar
Li, C. P. & Devoto, R. S. 1968 Phys. Fluids 11, 448.CrossRefGoogle Scholar
Liboff, R. L. 1959 Phys. Fluids 2, 40.CrossRefGoogle Scholar
Mason, E. A. & Monchick, L. 1962 J. Chem. Phys. 36, 1622.CrossRefGoogle Scholar
Mason, E. A., Munn, R. J. & Smith, F. J. 1967 Phys. Fluids 10, 1827.CrossRefGoogle Scholar
Mason, E. A., Vanderslice, J. T. & Yos, J. M. 1959 Phys. Fluids 2, 688.CrossRefGoogle Scholar
Meador, W. E. & Staton, L. D. 1965 Phys. Fluids 8, 1694.CrossRefGoogle Scholar
Monchick, L., Pereira, A. N. G. & Mason, E. A. 1965 J. Chem. Phys. 42, 3241.CrossRefGoogle Scholar
Monchick, L., Yun, K. S. & Mason, E. A. 1963 J. Chem. Phys. 39, 654.CrossRefGoogle Scholar
Moore, C. E. 1949 Atomic Energy Levels. NBS Circular, no. 467.Google Scholar
Morris, J. C., Rudis, R. P., Krey, R., Garrison, R. & Yos, J. M. 1967 AVCO Report AVS SD–0414–67–RR (to be published).Google Scholar
Morse, T. F. 1963 Phys. Fluids 6, 1420.CrossRefGoogle Scholar
Motschmann, H. 1966 Z. Phys. 191, 10.CrossRefGoogle Scholar
Mott, N. F. & Massey, H. S. W. 1965 The Theory of Atomic Collisions, 3rd edition. Oxford University Press.Google Scholar
Nyeland, C. & Mason, E. A. 1967 Phys. Fluids 10, 985.CrossRefGoogle Scholar
Plantikow, U. & Steinberger, S. 1968 Z. Phys. (to be published).Google Scholar
Ramer, S. 1965 Institut für Plasmaphysik Report 3/32.Google Scholar
Rosenbaum, B. M. & Levitt, L. 1962 NASA D–1107.Google Scholar
Schwartz, C. 1961 Phys. Rev. 124, 1468.CrossRefGoogle Scholar
Sloan, I. H. 1964 Proc. Roy. Soc. A 281, 151.Google Scholar
Smith, F. J. & Munn, R. J. 1964 J. Chem. Phys. 41, 3560.CrossRefGoogle Scholar
Smith, F. J., Mason, E. A. & Munn, R. J. 1965 Phys. Fluids 8, 1907.CrossRefGoogle Scholar
Spitzer, L., 06 1962 Physics of Fully Ionized Gases. New York: Interscience Publishers.Google Scholar
Temkin, A. & Lamein, J. C. 1961 Phys. Rev. 121, 788.CrossRefGoogle Scholar
Vanderslice, J. T., Weissmann, S., Mason, E. A. & Fallon, R. J. 1962 Phys. Fluids 5, 155.CrossRefGoogle Scholar
Vincenti, W. G. & Kruger, C. H., 06. 1965 Introduction to Physical Gas Dynamics. New York: John Wiley and Sons.Google Scholar
Wienecke, R. 1964 Z. Naturforschung 19 a, 675.CrossRefGoogle Scholar
Williams, R. H. & Dewitt, H. 1968 (to be published).Google Scholar
Yos, J. M. 1963 AVCO RAD—TM–63–7 (unpublished).Google Scholar