Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T13:37:35.865Z Has data issue: false hasContentIssue false

Transformation approximation for the plasma dispersion function and application to electrostatic waves

Published online by Cambridge University Press:  13 March 2009

Masumi Sato
Affiliation:
Department of Electrical Engineering, Yamagata University, Yonezawa 992, Japan

Abstract

Simple algebraic approximations for the plasma dispersion function Z(s) and its derivative are obtained by the Aitken's Δ2 or Shanks transformation. Using the approximate function Z'(s), higher-order dispersion relations for the electron wave and ion-acoustic wave are derived.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feix, M. 1969 Nonlinear Effects in Plasmas (ed. Kalman, G. and Feix, M.). Gordon & Breach.Google Scholar
Franklin, R. N. 1976 Plasma Phenomena in Gas Discharges. Oxford University Press.Google Scholar
Fried, B. & Conte, S. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Fried, B., Hedrick, C. L. & McCune, J. 1968 Phys. Fluids, 11, 249.CrossRefGoogle Scholar
Hershkowitz, N. & Lamm, A. J. 1980 IEEE Trans. Plasma Sci. PS-8, 275.CrossRefGoogle Scholar
Martín, P. & Donoso, G. 1980 J. Math. Phys. 21, 280.CrossRefGoogle Scholar
Németh, G., Áo, Á. & Páris, G. 1981 J. Math. Phys. 22, 1192.CrossRefGoogle Scholar
Rönnmahk, K. 1983 Plasma Phys. 25, 699.CrossRefGoogle Scholar
Shanks, D. 1955 J. Math. Phys. 34, 1.CrossRefGoogle Scholar
Smith, D. A. & Ford, W. F. 1979 SIAM J. Numer. Anal. 6, 223.CrossRefGoogle Scholar