Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:06:23.803Z Has data issue: false hasContentIssue false

Thermodynamics of the magnetic equilibria of a semi-collisionless plasma

Published online by Cambridge University Press:  13 March 2009

Ettore Minardi
Affiliation:
Max-Planek-Institut fü r Plasmaphysik, EURATOM Association, D-8046 Garching Germany

Extract

A statistical model of the collisionless or semi-collisionless equilibria of a magnetically confined plasma is presented which allows the calculation of the entropy and of the thermodynamic potentials as functionals of the collective equilibrium quantities. The entropy principle enables the identification of the magnetic equilibria which are preferentially chosen by the plasma. Stability criteria are derived by declaring unstable an equilibrium which admits in its neighbourhood an accessible equilibrium with higher entropy. The requirement of thermodynamic stability imposes considerable restrictions on the magnetic configuration, on the pressure distribution and on the velocity distribution function. New conditions for magnetic stability are derived and known results reinterpreted. The theory points towards the force-free configurations, in the case of a current carrying plasma subject to certain physical constraints, or towards the minimum-B configurations, in the general case of arbitrary ², as the most stable states from the thermodynamic point of view. The formalism is applied to identify the most promising lines to be pursued experimentally in order to achieve magnetic stability in a thermonuclear device.

Type
Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kruskal, R. M. 1952 Proc. Roy. Soc. A 244, 17.Google Scholar
Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Buffa, A., Costa, S., De, Angelis R., Di, Marco J. N., Giudicotti, L., Malesani, G., Nalesso, G. F., Ortolani, S. & Scarin, P. 1979 Proceedings of 9th European Conference on Controlled Fusion and Plasma Physics, Oxford, vol. 2, p. 544.Google Scholar
Bussac, M. N., Furth, H. P., Okabayashi, M., Rosenbluth, M. N. & Todd, A. M. M. 1978 Proceedings of 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Innsbruck, vol. 3, p. 249. IAEA.Google Scholar
Cuperman, S. & Tzur, I. 1973 Astrophys. J. 180, 181.CrossRefGoogle Scholar
Engelmann, F., Feix, M, & Minardi, E. 1963 Nuovo Cimento, 30, 830.CrossRefGoogle Scholar
Engelmann, F., Feix, M. & Minardi, E. 1970 Phys. Fluids, 13, 535.CrossRefGoogle Scholar
Finzi, U., Doremus, J. P., Holec, J. & Feix, M. R. 1974 Plasma Phys. 16, 189.CrossRefGoogle Scholar
Furth, H. P. 1962 Proceedings of 1st International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Salzburg, vol. 1, p. 169. TAEA.Google Scholar
Katz, A. 1967 Principles of Statistical Mechanics: The Information Theory Approach. Freeman.Google Scholar
Khinchin, A. I. 1957 Mathematical Foundations of Information Theory. Dover.Google Scholar
Laval, G., Pellat, R. & Vuillemain, M. 1965 Proceedings of 2nd International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Culham, vol. 2, p. 259. IAEA.Google Scholar
Minardi, E. 1968 Physica, 38, 481.CrossRefGoogle Scholar
Minardi, E. 1972 Plasma Phys. 14, 427, 443.CrossRefGoogle Scholar
Minardi, E. 1973 Phys. Fluids, 16, 122.CrossRefGoogle Scholar
Minardi, E. 1977 Nucl. Fusion, 17, 614.CrossRefGoogle Scholar
Minardi, E. 1978 Proceedings of Conference on Plasma Transport, Heating and MHD Theory, Varenna, p. 179. Pergamon.CrossRefGoogle Scholar
Minardi, E. & Santini, F. 1967 Physica, 33, 439.CrossRefGoogle Scholar
Northrop, T. G. 1963 The Adiabatic Motion of Charged Particles. Interscience.CrossRefGoogle Scholar
Pfirsch, D. 1962 Z. Naturforschung, A 17, 861.CrossRefGoogle Scholar
Reiman, A. 1980 Phys. Fluids, 23, 230.CrossRefGoogle Scholar
Robinson, D. C. & King, R. E. 1968 Proceedings of 4th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Novosibirsk, vol. 1, p. 263. IAEA.Google Scholar
Rutherford, P. H. & Frieman, E. A. 1968 Phys. Fluids, 11, 252.CrossRefGoogle Scholar
Rutherford, P. H., Furth, H. P. & Rosenbluth, M. N. 1971 Proceedings of 4th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Madison, vol. 2, p. 553. IAEA.Google Scholar
Santini, F. 1967 Physica 36, 538.CrossRefGoogle Scholar
Santini, F. 1968 Phys. Fluids, 12, 1522.CrossRefGoogle Scholar
Schindler, K. 1965 Proceedings of International Conference on Phenomena on Ionized Gases, Beograd, vol. 2, p. 736.Google Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases. Interscience.Google Scholar
Schwarzmeier, J. L., Lewis, H. R., Abraham-Schrauder, B. & Symon, K. R. 1979 Phys. Fluids, 22, 1747.CrossRefGoogle Scholar
Taylor, J. B. 1964 Phys. Fluids, 7, 767.CrossRefGoogle Scholar
Taylor, J. B. 1974 Phys. Rev. Lett. 33, 1139.CrossRefGoogle Scholar
Taylor, J. B. 1976 Pulsed High Beta Plasmas, p. 59. Pergamon.CrossRefGoogle Scholar
Titcharsh, E. C. 1939 The Theory of Functions, p. 382. Oxford University Press.Google Scholar
Tricomi, F. G. 1957 Equazioni a Derivate Parziali, p. 234. Cremonese.Google Scholar
Wesson, J. A. 1978 Nucl. Fusion, 1, 87.CrossRefGoogle Scholar
Woltjer, L. 1958 Proc. Natn. Acad. Sci., U.S.A. 44, 833.CrossRefGoogle Scholar
Woltjer, L. 1959 Proc. Natn. Acad. Sci., U.S.A. 45, 769.CrossRefGoogle Scholar
Woltjer, L. 1960 Rev. Mod. Phys. 32, 914.CrossRefGoogle Scholar