Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:54:41.744Z Has data issue: false hasContentIssue false

Theory of particle diffusion in electrostatic turbulent plasma using extended direct-interaction approximation

Published online by Cambridge University Press:  08 March 2010

M. TAGUCHI*
Affiliation:
College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-0005, Japan ([email protected])

Abstract

The theory of particle diffusion in an electrostatic turbulent plasma is formulated by applying the direct-interaction approximation (DIA) to subensemble-averaged functions instead of conventional ensemble-averaged ones. This theory approximately incorporates the Lagrangian description into the DIA through decorrelation trajectories. The running diffusion coefficient is shown to be calculated by solving a nonlinear ordinary differential equation together with an equation for decorrelation trajectories and by averaging initial conditions at the starting point of trajectories.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Krommes, J. A. 2002, Phys. Reports 360, 1.CrossRefGoogle Scholar
[2]Balescu, R. 2005, Aspects of Anomalous Transport in Plasmas. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
[3]Krommes, J. A. 1984, Handbook of Plasma Physics II. Amsterdam: North-Holland.Google Scholar
[4]McComb, W. D. 1990, The Physics of Fluid Turbulence. Oxford, UK: Clarendon.CrossRefGoogle Scholar
[5]Wang, H.-D., Vlad, M., Eijnden, E. V., Spineanu, F., Misguich, J. H. & Balescu, R. 1995, Phys. Rev. 51, 4844.Google Scholar
[6]Eijnden, E. V. & Balescu, R. 1995, J. Plasma Phys. 54, 185.CrossRefGoogle Scholar
[7]Corrsin, S. 1959, Atmospheric Diffusion and Air Pollusion (ed. Frenkiel, F. N. and Sheppard, P. A.). New York: Academic.Google Scholar
[8]Taguchi, M. 2003, Phys. Plasmas 10, 37.CrossRefGoogle Scholar
[9]Taguchi, M. 2005, J. Plasma Phys. 71, 449.CrossRefGoogle Scholar
[10]Vlad, M., Spineanu, F., Misguich, J. H. & Balescu, R. 1998, Phys. Rev. E 58, 7359.CrossRefGoogle Scholar
[11]Vlad, M., Spineanu, F., Misguich, J. H. & Balescu, R. 2000, Phys. Rev. E 61, 3023.CrossRefGoogle Scholar
[12]Vlad, M., Spineanu, F., Misguich, J. H. & Balescu, R. 2002, Nucl. Fusion 42, 157.CrossRefGoogle Scholar
[13]Vlad, M. & Spineanu, F. 2004, Phys. Rev. E 70, 056304.CrossRefGoogle Scholar
[14]Jouvet, B. & Phythian, R. 1979, Phys. Rev. A 19, 1350.CrossRefGoogle Scholar
[15]Jensen, R. V. 1981, J. Stat. Phys. 25, 183.CrossRefGoogle Scholar