Published online by Cambridge University Press: 10 December 2021
Particle acceleration via magnetic reconnection is a fundamental process in astrophysical plasmas. Experimental architectures are able to confirm a wide variety of particle dynamics following the two-dimensional Sweet–Parker model, but are limited in their reproduction of the fan-spine magnetic field topology about three-dimensional (3-D) null points. Specifically, there is not yet an experiment featuring driven 3-D torsional magnetic reconnection. To move in this direction, this paper expands on recent work toward the design of an experimental infrastructure for inducing 3-D torsional fan reconnection by predicting feasible particle acceleration profiles. Solutions to the steady-state, kinematic, resistive magnetohydrodynamic equations are used to numerically calculate particle trajectories from a localized resistivity profile using well-understood laboratory plasma parameters. We confine a thin, 10 eV helium sheath following the snowplough model into the region of this localized resistivity and find that it is accelerated to energies of ${\approx }2$ keV. This sheath is rapidly accelerated and focused along the spine axis propagating a few centimetres from the reconnection region. These dynamics suggest a novel architecture that may hold promise for future experiments studying solar coronal particle acceleration and for technology applications such as spacecraft propulsion.