Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T02:21:40.560Z Has data issue: false hasContentIssue false

Temporal Alfvén wave echoes in an inhomogeneous plasma

Published online by Cambridge University Press:  13 March 2009

I. C. Rae
Affiliation:
Department of Applied Mathematics, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland

Abstract

If an external current pulse is applied to a diffuse plasma sheet pinch, surface wave modes are generated, which decay by collisionless damping, leaving only oscillations of the Alfvén continuum along the Alfvén resonance surface. The transverse perturbations within this surface phase-mix to zero. It is shown that perturbations induced by an initial pulse are modulated by a (later applied) second pulse of different wavelength, to yield non-vanishing second-order transverse perturbations, even though the first-order transverse perturbations have phase-mixed to zero. This analysis shows the importance of nonlinear effects in the evolution of inhomogeneous magnetohydrodynamic motions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appert, K., Balet, B. & Václavík, J. 1982 Phys. Lett. 87A, 233.CrossRefGoogle Scholar
Coppi, B. & Pegoraro, F. 1982 Comments Plasma Phys. Controlled Fusion, 7, 53.Google Scholar
Consoli, T. 1980 Proceedings of 2nd Joint Grenoble-Varenna International Symposium. EUR 7424 EN.Google Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Fiori, C. 1980 Proceedings of 2nd Joint Grenoble-Varenna International Symposium. EUR 7424 EN.Google Scholar
Grad, H. 1973 Proc. NAS (USA), 70, 3277.Google Scholar
Hasegawa, A. & Chen, L. 1975 Phys. Rev. Lett. 35, 370.CrossRefGoogle Scholar
Jeffreys, H. & Jeffreys, B. S. 1946 Methods of Mathematical Physics. Cambridge University Press.Google Scholar
Kappraff, J. M. & Tataronis, J. A. 1977 J. Plasma Phys. 18, 209.CrossRefGoogle Scholar
Muskhelishvili, N. I. 1953 Singular Integral Equations. Noordhoff.Google Scholar
Nozaki, K., Fried, B. D. & Morales, G. J. 1980 Proceedings of 2nd Joint Grenoble-Varenna International Symposium. EUR 7424 EN.Google Scholar
O'Neil, T. M. & Gould, R. W. 1968 Phys. Fluids, 11, 134.Google Scholar
Rae, I. C. & Roberts, B. 1981 Geophys. Astrophys. Fluid Dyn. 18, 197.Google Scholar
Rae, I. C. 1982 Plasma Phys. 24, 133.CrossRefGoogle Scholar
Roberts, B. 1981 Solar Phys. 69, 39.Google Scholar
Sedláček, Z. 1971 J Plasma Phys. 5, 239.Google Scholar
Shohet, J. L. 1978 Comments Plasma Phys. Controlled Fusion 4, 37.Google Scholar
Tataronis, J. A. 1975 J. Plasma Phys. 13, 87.CrossRefGoogle Scholar
Tsushima, A., Amagishi, Y. & Inutake, M. 1982 Phys. Lett. 88A, 457.Google Scholar