Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T05:10:22.315Z Has data issue: false hasContentIssue false

Temperature measurement of a dust particle in a RF plasma GEC reference cell

Published online by Cambridge University Press:  29 September 2016

Jie Kong*
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research (CASPER), Baylor University, Waco, TX 76798-7310, USA
Ke Qiao
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research (CASPER), Baylor University, Waco, TX 76798-7310, USA
Lorin S. Matthews
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research (CASPER), Baylor University, Waco, TX 76798-7310, USA
Truell W. Hyde
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research (CASPER), Baylor University, Waco, TX 76798-7310, USA
*
Email address for correspondence: [email protected]

Abstract

The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a ‘normal’ temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Einstein, A. 1905 Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. Phys. (Berlin) 322, 549560.CrossRefGoogle Scholar
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710733.CrossRefGoogle Scholar
Farouki, R. T. & Hamaguchi, S. 1955 Thermodynamics of strongly-coupled Yukawa systems near the one-component-plasma limit. II. Molecular dynamics simulations. J. Chem. Phys. 101, 98859893.CrossRefGoogle Scholar
Hyde, T. W., Kong, J. & Matthews, L. 2013 Helical structures in vertically aligned dust particle chains in a complex plasma. Phys. Rev. E 87, 053106.Google Scholar
Ichimaru, S. 1982 Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 10171058.Google Scholar
Jung, H., Greiner, F., Asnaz, O. H., Carstensen, J. & Piel, A. 2015 Exploring the wake of a dust particle by a continuously approaching test grain. Phys. Plasmas 22, 053702.Google Scholar
Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen, M. G. 2014 Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 14931496.Google Scholar
Kneller, G. R. 2015 Anomalous diffusion in biomolecular systems from the perspective of non-equilibrium statistical physics. Acta Phys. Polon. B 46, 11671199.Google Scholar
Kneller, G. R.2016 Stochastic dynamics and relaxation in molecular systems – Brownian dynamics and beyond. http://dirac.cnrs-orleans.fr/∼kneller/SOCRATES/lecture.pdf.Google Scholar
Kong, J., Qiao, K., Matthews, L. & Hyde, T. W. 2014 Interaction force in a vertical dust chain inside a glass box. Phys. Rev. E 90, 013107.Google Scholar
Kubo, R. 1966 The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255283.Google Scholar
Kubo, R. 1986 Brownian motion and nonequilibrium statistical mechanics. Science 233, 330334.Google Scholar
Langevin, P. 1908 Sur la théorie du mouvement Brownien. C. R. Acad. Sci. Paris 146, 530533; translated version: Lemons, D. S. & Gythiel, A. 1997 Am. J. Phys. 65, 1079–1081.Google Scholar
Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. 2010 Measurement of the instantaneous velocity of a Brownian particle. Science 328, 16731675.Google Scholar
Li, T. & Raizen, M. K. 2013 Brownian motion at short time scales. Ann. Phys. (Berlin) 525, 281295.CrossRefGoogle Scholar
Melandso, F. 1997 Heating and phase transitions of dust–plasma crystals in a flowing plasma. Phys. Rev. E 55, 74957506.Google Scholar
Melzer, A., Homann, A. & Piel, A. 1996 Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53, 27572766.Google Scholar
Morfill, G. E. & Thomas, H. 1996 Plasma crystal. J. Vac. Sci. Technol. A 14, 490495.Google Scholar
Mukhopadhyay, A. K. & Goree, J. 2012 Two-particle distribution and correlation function for a 1D dusty plasma experiment. Phys. Rev. Lett. 109, 165003.Google Scholar
Mukhopadhyay, A. K. & Goree, J. 2013 Erratum: two-particle distribution and correlation function for a 1D dusty plasma experiment. Phys. Rev. Lett. 111, 139902.Google Scholar
Nosenko, V. & Goree, J. 2006 Laser method of heating monolayer dusty plasmas. Phys. Plasmas 13, 032106.Google Scholar
Otani, N. & Bhattacharjee, A. 1997 Debye shielding and particle correlations in strongly coupled dusty plasmas. Phys. Rev. Lett. 78, 14681471.CrossRefGoogle Scholar
Pieper, J. B. & Goree, J. 1996 Dispersion of plasma dust acoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77, 31373140.Google Scholar
Pusey, P. N. 2011 Brownian motion goes ballistic. Science 332, 802803.Google Scholar
Quinn, R. A. & Goree, J. 2000a Experimental investigation of particle heating in a strongly coupled dusty plasma. Phys. Plasmas 7, 39043911.Google Scholar
Quinn, R. A. & Goree, J. 2000b Single-particle Langevin model of particle temperature in dusty plasmas. Phys. Rev. E 61, 30333041.Google Scholar
Rasband, W.2016 National Institutes of Health, USA, http://imagej.nih.gov/ij.Google Scholar
Schmidt, C. & Piel, A. 2015 Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath. Phys. Rev. E 92, 043106.Google Scholar
Thomas, H. & Morfill, G. E. 1996 Melting dynamics of a plasma crystal. Nature 379, 806809.Google Scholar
Thomas, H., Morfill, G. E., Demmel, V. & Goree, J. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652655.Google Scholar
Vaulina, O. S. 2004 Transport properties of nonideal systems with isotropic pair interactions between particles. Plasma Phys. Rep. 30, 652661.Google Scholar
Vaulina, O. S., Khrapak, S. A., Nefedov, A. P. & Petrov, O. F. 1999 Charge-fluctuation-induced heating of dust particles in a plasma. Phys. Rev. E 60, 59595964.Google Scholar
Vaulina, O. S., Samarian, A. A., James, B., Petrov, O. F. & Fortov, V. E. 2003 Analysis of macroparticle charging in the near-electrode layer of a high-frequency capacitive discharge. J. Expl Theor. Phys. 96, 10371044.Google Scholar
Vaulina, O. S., Vladimirov, S. V., Repin, A. Yu. & Goree, J. 2006 Effect of electrostatic plasma oscillations on the kinetic energy of a charged macroparticle. Phys. Plasmas 13, 012111.Google Scholar
Wang, M. C. & Uhlenbeck, G. E. 1945 On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323342.Google Scholar
Wannier, G. H. 1966 Statistical Physics. Wiley.Google Scholar
Wigner, E. 1938 Effects of the electron interaction on the energy levels of electrons. Trans. Faraday Soc. 34, 678685.CrossRefGoogle Scholar
Williams, J. D. & Thomas, E. Jr. 2006 Initial measurement of the kinetic dust temperature of a weakly coupled dusty plasma. Phys. Plasmas 13, 063509.Google Scholar
Zhakhovski, V. V., Molotkov, V. I., Nefedov, A. P., Torchinski, V. M., Khrapak, A. G. & Fortov, V. E. 1997 Anomalous heating of a system of dust particles in a gas-discharge plasma. JETP Lett. 66, 419425.Google Scholar
Zwanzig, R. 2001 Nonequilibrium Statistical Mechanics. Oxford University Press.Google Scholar