Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T15:11:56.275Z Has data issue: false hasContentIssue false

Surface Alfvén waves of negative energy

Published online by Cambridge University Press:  13 March 2009

M. S. Ruderman
Affiliation:
Centre for Plasma Astrophysics, Katholiek Universiteit Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
M. Goossens
Affiliation:
Centre for Plasma Astrophysics, Katholiek Universiteit Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium

Abstract

The stability of an MHD tangential discontinuity is studied in an incompressible plasma where viscosity is taken into account at one side of the discontinuity. When the shear velocity is smaller than the threshold value for the onset of the Kelvin-Helmholtz (KH) instability, two surface waves can propagate along the discontinuity. There is a critical value for the shear velocity, which is smaller than the threshold value for the onset of the KH instability. When the shear velocity is smaller than the critical value, the two surface waves propagate in Opposite directions. When the shear velocity is larger than the critical velocity, the two waves propagate in the same direction, and the wave with smaller phase velocity is a negative-energy wave. Viscosity causes this negative-energy wave to be unstable, and the instability increment is proportional to the viscosity coefficient.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford.Google Scholar
Eserskiˇ, A. B., Ostrovskiˇ, L. A. & Stepanyants, Yu. A. 1981 Indutsirovannye techeniya i ich vklad v energiyu volnovych dvizheniˇ zhidkosti. Izu. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 17, 12011208 [ Izv. Atmos. Ocean. Phys. 17, 890].Google Scholar
Hollweg, V. H., Yang, G., Cadez, V. M. & Gakovic, B. 1990 Surface waves in an incompressible fluid: resonant instability due to velocity shear. Astrophys. J. 349, 335344.CrossRefGoogle Scholar
Kikina, N. G. 1967 O vliyanii vyazkosti na neustoiˇchivost potentsialnych razryvov v neszhimaemoiˇ srede. Akust. Zh. 13, 213217 [Soviet Phys. Akust. 13, 184].Google Scholar
Ostrovskiˇ, L. A., Rybak, S. A. & Tsimring, L. Sh. 1986 Volny otrizatelnoiˇ energii v gidrodinamike. Usp. Fiz. Nauk 150, 417437 [Negative energy waves in hydrodynamics. Soviet Phys. Usp. 29, 1040–1052].Google Scholar
Ostrovskiˇ, L. A. & Stepanyants, Yu. A. 1982 Nelineinaya stadiya sdvigovoiˇ neustoiˇchivosti v stratifitsirovannoiˇ zhidkosti konechnoiˇ glubiny. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza No. 4. 6370.Google Scholar
Ryutov, D. D. & Ryutova, M. P. 1976 Zvukovye kolebaniya v plasme s ‘magnitnymi nityami’. Zh. Eksp. Teor. Fiz. 70, 943954 [Sound oscillations in a plasma with ‘magnetic filaments’. Soviet Phys. JETP 43, 491–497].Google Scholar
Ryutova, M. P. 1988 Volny s otrizatelnoiˇ energieiˇ v plazme so strukturirovannymi magnitnymi polyami. Zh. Eksp. Teor. Fiz. 94, 138151 [Negative-energy waves in a plasma with structures magnetic fields. Soviet Phys. JETP 67, 1594–1601].Google Scholar
Syrovatskiˇ, S. I. 1957 Magnitnaya gidrodinamika. Usp. Fiz. Nauk 62, 247303.Google Scholar