Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T06:15:35.626Z Has data issue: false hasContentIssue false

Study on electron emission by a spherical object: dynamics of trapped particles

Published online by Cambridge University Press:  18 March 2019

G. Coppa*
Affiliation:
Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, 10129 Torino, Italy
R. Mulas
Affiliation:
Independent Scholar
*
Email address for correspondence: [email protected]

Abstract

In this paper, the dynamics of electrons emitted by a spherical object when the total charge of the system is constant is studied in detail. In particular, the condition for which the total electron charge presents damped oscillations is deduced rigorously by considering a perturbation with respect to the steady-state solution. The results obtained can be of utility in simulating the expansion of a spherical plasma by separating the ion and electron time scales.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimov, P. V., Schamel, H., Ender, A. Y. & Kuznetsov, V. I. 2003 Switching as a dynamical process in electron diodes. J. Appl. Phys. 93 (2), 12461256.10.1063/1.1531813Google Scholar
Akimov, P. V., Schamel, H., Kolinsky, H., Ender, A. Y. & Kuznetsov, V. I. 2001 The true nature of space-charge-limited currents in electron vacuum diodes: a Lagrangian revision with corrections. Phys. Plasmas 8 (8), 37883798.10.1063/1.1383287Google Scholar
Boella, E., Coppa, G., D’Angola, A. & Peiretti Paradisi, B. 2018 Gridless particle technique for Vlasov–Poisson system in problem with high degree of symmetry. Comput. Phys. Commun. 224, 136143.10.1016/j.cpc.2017.11.004Google Scholar
Child, C. D. 1911 Discharge from hot CaO. Phys. Rev. (Ser. I) 32, 492511.10.1103/PhysRevSeriesI.32.492Google Scholar
Colandrea, C.2018 Model to study the expansion of plasma contactor emitted by a magnetospheric spacecraft to mitigate charging effects. Master thesis, Politecnico di Torino, Torino, Italy.Google Scholar
Delzanno, G. L., Borovsky, J. E., Thomsen, M. F., Gilchrist, B. E. & Sanchez, E. 2016 Can an electron gun solve the outstanding problem of magnetosphere–ionosphere connectivity? J. Geophys. Res. 121 (7), 67696773.10.1002/2016JA022728Google Scholar
Ditmire, T., Donnelly, T., Rubenchik, A. M., Falcone, R. W. & Perry, M. D. 1996 Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 33793402.10.1103/PhysRevA.53.3379Google Scholar
Ender, A., Kolinsky, H., Kuznetsov, V. & Schamel, H. 2000 Collective diode dynamics: an analytical approach. Phys. Rep. 328 (1), 172.10.1016/S0370-1573(99)00092-7Google Scholar
Ender, A. Y. & Kuznetsov, V. I. 2014 Nonlinear oscillations in the Knudsen plasma diodes. J. Phys.: Conf. Ser. 510 (1), 012046.Google Scholar
Hendrickson, R. A., McEntire, R. W. & Winckler, J. R. 1975 Echo I: an experimental analysis of local effects and conjugate return echoes from an electron beam injected into the magnetosphere by a sounding rocket. Planet. Space Sci. 23, 14311444.10.1016/0032-0633(75)90039-2Google Scholar
Kuznetsov, V. I. & Ender, A. Y. 2010a Time-dependent regimes of a Bursian diode I: stability of steady solutions. Plasma Phys. Rep. 36 (3), 226235.10.1134/S1063780X10030049Google Scholar
Kuznetsov, V. I. & Ender, A. Y. 2010b Time-dependent regimes of a Bursian diode II: characteristic features of nonlinear oscillations. Plasma Phys. Rep. 36 (3), 236249.10.1134/S1063780X10030050Google Scholar
Langmuir, I. & Blodgett, K. B. 1924 Currents limited by space charge between concentric spheres. Phys. Rev. 24, 4959.10.1103/PhysRev.24.49Google Scholar
Peano, F., Peinetti, F., Mulas, R., Coppa, G. & Silva, L. O. 2006 Kinetics of the collisionless expansion of spherical nanoplasmas. Phys. Rev. Lett. 96, 175002.10.1103/PhysRevLett.96.175002Google Scholar