Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T04:08:43.626Z Has data issue: false hasContentIssue false

Study of up–down poloidal density asymmetry of high-$Z$ impurities with the new impurity version of XGCa

Published online by Cambridge University Press:  17 October 2019

J. Dominski*
Affiliation:
Princeton Plasma Physics Laboratory, 100 Stellarator rd, Princeton, NJ 08540, USA
C. S. Chang
Affiliation:
Princeton Plasma Physics Laboratory, 100 Stellarator rd, Princeton, NJ 08540, USA
R. Hager
Affiliation:
Princeton Plasma Physics Laboratory, 100 Stellarator rd, Princeton, NJ 08540, USA
P. Helander
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
S. Ku
Affiliation:
Princeton Plasma Physics Laboratory, 100 Stellarator rd, Princeton, NJ 08540, USA
E. S. Yoon
Affiliation:
Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
*
Email address for correspondence: [email protected]

Abstract

Addition of multispecies impurity ions to the total-f gyrokinetic particle-in-cell code XGCa is reported, including a cross-verification of neoclassical physics against the NEO code. This new version of the neoclassical gyrokinetic code XGCa is used to benchmark and confirm the previous reduced-equation-based prediction that high-$Z$ impurity particles in the Pfirsch–Schlüter regime can exhibit a significant level of up–down poloidal asymmetry, through the large parallel friction force, and thus influence the radial plasma transport significantly. The study is performed in a plasma with weak toroidal rotation. In comparison, when the impurity particles are in the plateau regime, the up–down poloidal asymmetry becomes weak, with the parallel friction force becoming weaker than the parallel viscous force. It is also found that the linearization of the perturbed distribution function, based on the small poloidal asymmetry assumption, can become invalid. Using the numerical data from XGCa, each term in the parallel fluid force-balance equation have been analysed to find that both the main ions and the electrons respond to the poloidal potential variation adiabatically when the high-$Z$ tungsten possesses large poloidal variation.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angioni, C., Casson, F. J., Mantica, P., Pütterich, T., Valisa, M., Belli, E. A., Bilato, R., Giroud, C. & Helander, P. 2015 The impact of poloidal asymmetries on tungsten transport in the core of jet h-mode plasmas. Phys. Plasmas 22 (5), 055902.Google Scholar
Angioni, C. & Helander, P. 2014 Neoclassical transport of heavy impurities with poloidally asymmetric density distribution in tokamaks. Plasma Phys. Control. Fusion 56 (12), 124001.Google Scholar
Angioni, C., Mantica, P., Pütterich, T., Valisa, M., Baruzzo, M., Belli, E. A., Belo, P., Casson, F. J., Challis, C., Drewelow, P. et al. 2014 Tungsten transport in jet h-mode plasmas in hybrid scenario, experimental observations and modelling. Nucl. Fusion 54 (8), 083028.Google Scholar
Belli, E. A. & Candy, J. 2008 Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics. Plasma Phys. Control. Fusion 50 (9), 095010.Google Scholar
Belli, E. A. & Candy, J. 2012 Full linearized Fokker–Planck collisions in neoclassical transport simulations. Plasma Phys. Control. Fusion 54 (1), 015015.Google Scholar
Brau, K., Suckewer, S. & Wong, S. K. 1983 Vertical poloidal asymmetries of low-z element radiation in the pdx tokamak. Nucl. Fusion 23 (12), 16571668.Google Scholar
Breton, S., Casson, F. J., Bourdelle, C., Angioni, C., Belli, E., Camenen, Y., Citrin, J., Garbet, X., Sarazin, Y. & Sertoli, M. 2018 High z neoclassical transport: application and limitation of analytical formulae for modelling jet experimental parameters. Phys. Plasmas 25 (1), 012303.Google Scholar
Burrell, K. H. & Wong, S. K. 1979 Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport. Nucl. Fusion 19, 1571.Google Scholar
Chang, C. S. & Hazeltine, R. D. 1980 Impurity transport in the collisional regime for large poloidal variations. Nucl. Fusion 20 (11), 13971405.Google Scholar
Chang, C. S. 1983 Enhancement of neoclassical transport coefficients by a poloidal electric field in tokamaks. Phys. Fluids 26 (8), 21402149.Google Scholar
Chang, C. S. & Hinton, F. L. 1982 Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime. Phys. Fluids 25 (9), 14931494.Google Scholar
Dominski, J., Ku, S.-H. & Chang, C.-S. 2018 Gyroaveraging operations using adaptive matrix operators. Phys. Plasmas 25 (5), 052304.Google Scholar
Estève, D., Sarazin, Y., Garbet, X., Grandgirard, V., Breton, S., Donnel, P., Asahi, Y., Bourdelle, C., Dif-Pradalier, G., Ehrlacher, C. et al. 2018 Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport. Nucl. Fusion 58 (3), 036013.Google Scholar
Fülöp, T. & Helander, P. 1999 Nonlinear neoclassical transport in a rotating impure plasma with large gradients. Phys. Plasmas 6 (8), 30663075.Google Scholar
Guazzotto, L., Betti, R., Manickam, J. & Kaye, S. 2004 Numerical study of tokamak equilibria with arbitrary flow. Phys. Plasmas 11 (2), 604614.Google Scholar
Hager, R. & Chang, C. S. 2016 Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear coulomb collisions. Phys. Plasmas 23 (4), 042503.Google Scholar
Hager, R., Dominski, J. & Chang, C. S. 2019 On the significance of the coulomb logarithm in benchmarks of neoclassical codes. Phys. Plasmas 26, doi:10.1063/1.5121308 (accepted).Google Scholar
Hager, R., Yoon, E. S., Ku, S., D’Azevedo, E. F., Worley, P. H. & Chang, C. S. 2016 A fully non-linear multi-species Fokker Planck Landau collision operator for simulation of fusion plasma. J. Comput. Phys. 315, 644660.Google Scholar
Helander, P. 1998 Bifurcated neoclassical particle transport. Phys. Plasmas 5 (11), 39994004.Google Scholar
Hinton, F. L. & Hazeltine, R. D. 1976 Theory of plasma transport in toroidal confinement systems. Rev. Mod. Phys. 48, 239308.Google Scholar
Hinton, F. L. & Wong, S. K. 1985 Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Fluids 28 (10), 30823098.Google Scholar
Hirshman, S. P. & Sigmar, D. J. 1976 Approximate Fokker–Planck collision operator for transport theory applications. Phys. Fluids 19 (10), 15321540.Google Scholar
Huba, J. D. 2013 NRL PLASMA FORMULARY Supported by the Office of Naval Research. Naval Research Laboratory.Google Scholar
Kim, K., Kwon, J.-M., Chang, C. S., Seo, J., Ku, S. & Choe, W. 2017 Full-f XGC1 gyrokinetic study of improved ion energy confinement from impurity stabilization of ITG turbulence. Phys. Plasmas 24 (6), 062302.Google Scholar
Köchl, F., Loarte, A., de la Luna, E., Parail, V., Corrigan, G., Harting, D., Nunes, I., Reux, C., Rimini, F. G., Polevoi, A. et al. 2018 W transport and accumulation control in the termination phase of jet h-mode discharges and implications for iter. Plasma Phys. Control. Fusion 60 (7), 074008.Google Scholar
Ku, S., Chang, C. S., Hager, R., Churchill, R. M., Tynan, G. R., Cziegler, I., Greenwald, M., Hughes, J., Parker, S. E., Adams, M. F. et al. 2018 A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1. Phys. Plasmas 25 (5), 056107.Google Scholar
Ku, S., Hager, R., Chang, C. S., Kwon, J. M. & Parker, S. E. 2016 A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma. J. Comput. Phys. 315, 467475.Google Scholar
Litaudon, X. et al. 2017 Overview of the jet results in support to iter. Nucl. Fusion 57 (10), 102001.Google Scholar
Loarte, A., Reinke, M. L., Polevoi, A. R., Hosokawa, M., Chilenski, M., Howard, N., Hubbard, A., Hughes, J. W., Rice, J. E., Walk, J. et al. 2015 Tungsten impurity transport experiments in alcator c-mod to address high priority research and development for iter. Phys. Plasmas 22 (5), 056117.Google Scholar
Parker, S. E., Procassini, R. J., Birdsall, C. K. & Cohen, B. I. 1993 A suitable boundary condition for bounded plasma simulation without sheath resolution. J. Comput. Phys. 104 (1), 4149.Google Scholar
Reinke, M. L.2011 Experimental tests of parallel impurity transport theory in tokamak plasmas. PhD thesis, Massachusetts Institute of Technologies.Google Scholar
Reinke, M. L., Hutchinson, I. H., Rice, J. E., Greenwald, M., Howard, N. T., Hubbard, A., Hughes, J. W., Terry, J. L. & Wolfe, S. M. 2013 Parallel transport studies of high-z impurities in the core of alcator c-mod plasmas. Phys. Plasmas 20 (5), 056109.Google Scholar
Romanelli, M. & Ottaviani, M. 1998 Effects of density asymmetries on heavy impurity transport in a rotating tokamak plasma. Plasma Phys. Control. Fusion 40 (10), 1767.Google Scholar
Sauter, O., Angioni, C. & Lin-Liu, Y. R. 1999 Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime. Phys. Plasmas 6 (7), 28342839.Google Scholar
Stotler, D. P., Lang, J., Chang, C. S., Churchill, R. M. & Ku, S. 2017 Neutral recycling effects on ITG turbulence. Nucl. Fusion 57 (8), 086028.Google Scholar
Tendler, M. 1981 Impurity Transport in a Rotating Toroidal Plasma with Cold-Gas Mantle System. International Atomic Energy Agency (IAEA).Google Scholar