Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T04:42:28.326Z Has data issue: false hasContentIssue false

Study of collisionless high-energy charged particle losses for stellarators in presence of resonant perturbations of the magnetic field

Published online by Cambridge University Press:  13 January 2016

V. V. Nemov*
Affiliation:
Institute of Plasma Physics, National Science Center ‘Kharkov Institute of Physics and Technology’, Akademicheskaya str. 1, 61108 Kharkov, Ukraine Institut für Theoretische Physik – Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz, Austria
S. V. Kasilov
Affiliation:
Institute of Plasma Physics, National Science Center ‘Kharkov Institute of Physics and Technology’, Akademicheskaya str. 1, 61108 Kharkov, Ukraine Institut für Theoretische Physik – Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz, Austria
W. Kernbichler
Affiliation:
Institut für Theoretische Physik – Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz, Austria
V. N. Kalyuzhnyj
Affiliation:
Institute of Plasma Physics, National Science Center ‘Kharkov Institute of Physics and Technology’, Akademicheskaya str. 1, 61108 Kharkov, Ukraine
*
Email address for correspondence: [email protected]

Abstract

Using a numerical code based on guiding centre drift equations, collisionless high energy particle losses, and in particular ${\it\alpha}$-particle losses, are studied for a number of stellarator configurations in the presence of magnetic islands caused by resonant perturbations of magnetic surfaces. Standard stellarator configurations, as well as an optimized quasi-helically symmetric stellarator, are used in this study. It is found that the role of islands in collisionless ${\it\alpha}$-particle losses is practically negligible for standard stellarators, however, for optimized stellarators, islands can have a negative impact.

Type
Research Article
Copyright
© EUROfusion Consortium Research Institutions 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Grieger, G., Lotz, W., Merkel, P., Nührenberg, J., Sapper, J., Strumberger, E., Wobig, H. , the W7-X Team, Burhenn, R., Erckmann, V., Gasparino, U., Giannone, L., Hartfuss, H. J., Jaenicke, R., Kühner, G., Ringler, H., Weller, A., Wagner, F. & W7-AS-Team 1992 Physics optimization of stellarators. Phys. Fluids B 4, 20812091.CrossRefGoogle Scholar
Hirshman, S. P. & Betancourt, O. 1991 Preconditioned descent algorithm for rapid calculations of magnetohydrodynamic equilibria. J. Comput. Phys. 96, 99109.CrossRefGoogle Scholar
Lesnyakov, G. G., Volkov, E. D., Georgievskij, A. V., Zalkind, V. M., Kuznetsov, Yu. K., Ozherel’ev, F. I., Pavlichenko, O. S., Pogozhev, D. P., Schwörer, P. & Hailer, K. 1992 Study of the magnetic configuration of an $l=3$ torsatron by the triode and luminescent rod method. Nucl. Fusion 32, 21572176.CrossRefGoogle Scholar
Lotz, W., Merkel, P., Nührenberg, J. & Strumberger, E. 1992 Collisionless ${\it\alpha}$ -particle confinement in stellarators. Plasma Phys. Control. Fusion 34, 10371052.CrossRefGoogle Scholar
Nemov, V. V., Kasilov, S. V. & Kernbichler, W. 2014 Collisionless high energy particle losses in optimized stellarators calculated in real-space coordinates. Phys. Plasmas 21, 062501.CrossRefGoogle Scholar
Nührenberg, J. & Zille, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129, 113117.CrossRefGoogle Scholar
Pavlichenko, O. S. 1993 First results from the ‘URAGAN-2M’ torsatron. Plasma Phys. Control. Fusion 35, B223B230.CrossRefGoogle Scholar
Shaing, K. C. 2002 Transport processes in the vicinity of a magnetic island in tokamaks. Phys. Plasmas 9, 849852.CrossRefGoogle Scholar