Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:23:36.882Z Has data issue: false hasContentIssue false

Strongly nonlinear stationary Langmuir waves (Tmc2)

Published online by Cambridge University Press:  13 March 2009

I. M. Aleshin
Affiliation:
Department of Physics, Division of Theoretical Physics, Moscow State University, Moscow, Russia
M. A. Drofa
Affiliation:
Department of Physics, Division of Theoretical Physics, Moscow State University, Moscow, Russia
L. S. Kuzmenkov
Affiliation:
Department of Physics, Division of Theoretical Physics, Moscow State University, Moscow, Russia

Abstract

Extremely large-amplitude Langmuir waves are investigated on the basis of relativistic kinetic theory. Analytical formulae for the electron density and the electric field of the wave differ essentially from earlier results obtained using the cold-hydrodynamical equations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I. & Lubarskiy, G. Ya. 1951 Dokl. Akad. Nauk SSSR 80, 193.Google Scholar
Akhiezer, A. I. & Polovin, R. V. 1956 Zh. Eksp. Teor. Fiz. 3, 696.Google Scholar
Infeld, E. & Rowlands, G. 1989 Phys. Rev. Lett. 62, 1122.CrossRefGoogle Scholar
Katsouleas, T. & Mori, W. B. 1988 Phys. Rev. Lett. 61, 90.CrossRefGoogle Scholar
Kuzmenkov, L. S. & Polyakov, P. A. 1982 Zh. Eksp. Teor. Fiz. 82, 139.Google Scholar
Kuzmenkov, L. S., Sokolov, A. A. & Trubachov, O. O. 1983 Izv. Vuzov. Phys. 12, 17.Google Scholar
Vahdein, A. S., Kuzmenkov, L. S. & Trubacnov, O. O. 1989 Fiz. Plasmy 15, 119.Google Scholar