Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T04:39:09.745Z Has data issue: false hasContentIssue false

Stochastic solution of the Boltzmann equation for thermal electrons in an attractive Coulombic potential*

Published online by Cambridge University Press:  13 March 2009

M. J. Bell
Affiliation:
School of Engineering and Applied Science, Princeton University, Princeton, N.J.
M. D. Kostin
Affiliation:
School of Engineering and Applied Science, Princeton University, Princeton, N.J.

Abstract

A stochastic method has been employed to investigate the distribution function of free electrons in gases in the field of a positive ion. Stochastic results have been obtained for several pressures and for both large (Langevin) and small ions, and the results have been compared with the solutions of the diffusion approximation and Pitaevskii's Fokker—Planck approximation to the Boltzmann equation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

†Present address: Oak Ridge National Laboratory, Oak Ridge, Tennessee.
*

This research was supported by a grant from the National Science Foundation.

References

REFERENCES

Bates, D. R. & Khare, S. P. 1965 Proc Phys. Soc. 85, 231.CrossRefGoogle Scholar
Brueckner, K. A. 1964 J. Chem. Phys. 40, 439.CrossRefGoogle Scholar
Cashwell, E. D. & Everett, C. J. 1959 The Monte Carlo Method for Random Walk Problems, Chapters 5 and 7. New York: Pergamon Press.Google Scholar
Chapin, D. M. & Kostin, M. D. 1967 J. Chem. Phys. 46, 2506.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1964 Mathematical Theory of Non-Uniform Gases, 2nd ed., Chapter 3. New York: Cambridge University Press.Google Scholar
Dalgarno, A. & Moffett, R. J. 1963 Proc. Natn. Acad. Sci. India A 33, 511.Google Scholar
Dalidchik, F. I. & Saysov, Y. S. 1966 Soviet Phys.—JETP 22, 212.Google Scholar
Gerjouy, E. & Stein, S. 1955 a Phys. Rev. 97, 1671.CrossRefGoogle Scholar
Gerjouy, E. & Stein, S. 1955 b Phys. Rev. 98, 1848.CrossRefGoogle Scholar
Golden, D. E & Bandel, H. W. 1965 Phys. Rev. 138, A 14.CrossRefGoogle Scholar
Golden, D. E., Bandel, H. W. & Salerno, J. A. 1966 Phys. Rev. 146, 40.CrossRefGoogle Scholar
Goldstein, H. 1950 Classical Mechanics, Chapter 3. Reading, Mass.: Addison-Wesley Publishing Co.Google Scholar
Grad, H. 1962 Proceedings of the Fifth International Conference on Ionization Phenomena in Gases, pp. 16301649. Edited by Maecker, H.. Amsterdam: North Holland Publishing Company.Google Scholar
Hara, S. 1967 J. Phys. Soc. Japan 22, 710.CrossRefGoogle Scholar
Jaffe, G. 1941 Phys. Rev. 59, 652.CrossRefGoogle Scholar
Kennard, E. H. 1938 Kinetic Theory of Gases, Chapter 3. New York: McGraw-Hill Book Co., Inc.Google Scholar
Labahn, R. W. & Callaway, J. 1964 Phys. Rev. 135, A 1539.CrossRefGoogle Scholar
Las, N. F. & Geltman, S. 1967 Phys. Rev. 160, 53.Google Scholar
Langevin, P. 1903 Ann. Chim. Phys. 28, 289, 443.Google Scholar
Loeb, L. B. 1961 Basic Processes of Gaseous Electronics, p. 171. Berkeley: University of California Press.Google Scholar
Loeb, L. B. & Marshall, L. C. 1929 J. Franklin Inst. 209, 371.CrossRefGoogle Scholar
Natanson, G. L. 1960 Soviet Phys.-Tech. Phys. 4, 1373.Google Scholar
Schulz, G. J. 1964 Phys. Rev. 135, A 988.CrossRefGoogle Scholar
Thomson, J. J. 1924 Phil. Mag. 47, 337.CrossRefGoogle Scholar
Weinberg, A. M. & Wigner, E. P. 1958 The Physical Theory of Neutron Chain Reactors, Chapters 9, 17, and 22. Chicago: The University of Chicago Press.Google Scholar
Wilkins, R. L. 1966 J. Chem. Phys. 44, 1884.CrossRefGoogle Scholar