Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T20:50:11.220Z Has data issue: false hasContentIssue false

Stochastic acceleration and heating of ions by a non-sinusoidal magnetosonic wave

Published online by Cambridge University Press:  13 March 2009

H. Varvoglis
Affiliation:
Physics Department, University of Thessaloniki, GR-54006 Thessaloniki, Greece
V. Basios
Affiliation:
Physics Department, University of Thessaloniki, GR-54006 Thessaloniki, Greece

Abstract

The stochastic non-resonant energization of ions in non-sinusoidal coherent plane-polarized magnetosonic waves is investigated. It is found that, as in the case of sinusoidal magnetosonic waves, the process does not follow quasi-linear theory, i.e. it is a diffusion in velocity space, but with a diffusion coefficient D ∝ ν–α, α ≈ 1, instead of D ∝ ν–3. Moreover, it is found that the presence of strong harmonics lowers the stochasticity threshold of the wave amplitude by as much as one order of magnitude (depending on the form of the power spectrum), but at the same time it suppresses the diffusion rate of the ions in velocity space. Our results indicate that waves with a saw-tooth wave form are the most efficient for ion energization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, H., Momota, H. & Itatani, R. 1980 Phys. Fluids, 23, 2417.CrossRefGoogle Scholar
Bevington, P. R. 1969 Data Reduction and Error Analysis for the Physical Sciences, pp. 123, 311. McGraw-Hill.Google Scholar
Chen, F. F. 1984 Introduction to Plasma Physics, vol. 1, p. 302Plenum.Google Scholar
Contoporlos, G., Varvoglis, H. & Barbanis, B. 1987 Astron. Aatrophys. 172, 55.Google Scholar
Dawson, J. M., Decyck, V. K., Huff, R. W., Jechart, T., Katsouleas, T., Leboeuf, B., Lembege, B., Martinez, R., Ohsawa, Y. & Ratliff, S. T. 1983 Phys. Rev. Lett. 50, 1455.CrossRefGoogle Scholar
Hizanidis, K. 1989 Phys. Fluids, 1B, 675.CrossRefGoogle Scholar
Karney, C. F. F. 1979 Phys. Fluids, 22, 2188.CrossRefGoogle Scholar
Kennel, C. F. & Engelman, F. 1965 Phys. Fluids, 9, 2377.CrossRefGoogle Scholar
Lembege, B., Ratliff, S. T., Dawson, J. M. & Ohsawa, Y. 1983 Phys. Rev. Lett. 51, 264.CrossRefGoogle Scholar
Lichtenberg, A. J. & Lieberman, M. A. 1983 Regular and Stochastic Motion, pp. 17, 23, 42, 159. 262, 286, 316. 457. Springer.CrossRefGoogle Scholar
MacKay, R. S., Meiss, J. D. & Percival, I. C. 1984 Physica, 13D, 55.Google Scholar
Ohsawa, Y. 1988 J. Phys. Soc. Jpn, 57, 929.CrossRefGoogle Scholar
Ohsawa, Y. & Sakai, J. I. 1988 Solar Phys., 116, 157.CrossRefGoogle Scholar
Varvoglis, H. 1984 Astron. Astrophys. 132, 321.Google Scholar
Varvoglis, H. & Papadopoulos, K. 1984 J. Phys. A 17, 311.Google Scholar
Wu, C. S., Gaffey, J. D. & Liberman, B. 1981 J. Plasma Phys. 25, 391.CrossRefGoogle Scholar