Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T01:43:32.208Z Has data issue: false hasContentIssue false

Stimulated backscattering of electromagnetic waves from ion–ion hybrid waves in a magnetized plasma

Published online by Cambridge University Press:  13 March 2009

Kai Fong Lee
Affiliation:
Department of Electronics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Abstract

In a high-density magnetized plasma composed of two ion species of different charge-to-mass ratios, electrostatic waves propagating across the magnetic field exhibit a resonance at the Buchsbaum or ion-ion hybrid frequency, in addition to the resonances at the upper and lower hybrid frequencies. In this paper, the possibility of stimulated scattering of electromagnetic waves incident normal to the magnetic field from electrostatic waves at the ion-ion hybrid frequency is investigated. Based on the cold-plasma equations, it is found that such a process is theoretically possible. Formulas for the threshold power and growth rate are obtained, which show that the threshold power is much greater, and the growth rate much less, than those of stimulated scattering from upper and lower hybrid waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bogoliubov, N. N. & Mitropolskii, Y. A. 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach.Google Scholar
Bornatici, M. 1975 J. Plasma Phys. (To be published.)Google Scholar
Buchsbaum, S. J. 1960 Phys. Fluids, 3, 418.CrossRefGoogle Scholar
Chen, C. S. & Lewak, G. 1970 J. Plasma Phys. 4, 357.CrossRefGoogle Scholar
Comisar, G. G. 1965 Phys. Rev. 141, 200.CrossRefGoogle Scholar
Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. & Rosenbluth, M. N. 1974 Phys. Fluids, 17, 778.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1972 Phys. Rev. Lett. 29, 249.CrossRefGoogle Scholar
Frieman, E. A. 1963 J. Math. Phys. 4, 410.CrossRefGoogle Scholar
Jorna, S. 1974 Phys. Fluids, 17, 765.CrossRefGoogle Scholar
Kaw, P. K. & Lee, Y. C. 1973 Phys. Fluids, 16, 155.CrossRefGoogle Scholar
Lee, K. F. 1974 a J. Plasma Phys. 11, 99.CrossRefGoogle Scholar
Lee, K. F. 1974 b Phys. Fluids, 17, 1220.CrossRefGoogle Scholar
Lee, K. F. 1974 c Phys. Fluids, 17, 1343.CrossRefGoogle Scholar
Lee, K. F. 1974 d IEEE Trans. on Plasma Science PS-2, 187.Google Scholar
Lee, K. F. 1975 J. Plasma Phys. 13, 317.CrossRefGoogle Scholar
Larsson, J. & Stenflo, L. 1974 Beitr. Plasmaphys. 14, 7.CrossRefGoogle Scholar
Montgomery, D. & Alexeff, I. 1966 Phys. Fluids, 9, 1362.CrossRefGoogle Scholar
Nishikawa, K. 1968 a J. Phys. Soc. Japan, 24, 916.CrossRefGoogle Scholar
Nishikawa, K. 1968 b J. Phys. Soc. Japan, 24, 1152.CrossRefGoogle Scholar
Ott, E., McBride, J. B. & Orens, J. H. 1973 Phys. Fluids, 16, 270.CrossRefGoogle Scholar
Prasad, R. 1971 J. Plasma Phys. 5, 291.CrossRefGoogle Scholar
Stix, T. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tzoar, N. 1969 Phys. Rev. 178, 356.CrossRefGoogle Scholar
Yu, M. Y., Spatschek, K. H. & Shukla, P. K. 1974 Z. Naturforsch. 29A, 1736.CrossRefGoogle Scholar