Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T00:31:01.415Z Has data issue: false hasContentIssue false

The stability properties of cylindrical force-free fields: effect of an external potential field

Published online by Cambridge University Press:  13 March 2009

C. Chiuderi
Affiliation:
Istituto di Astronomia, Università di Firenze, Italy
G. Einaudi
Affiliation:
Istituto di Fisica, Università di Pisa, Italy
S. S. Ma
Affiliation:
Department of Physics, University of California, Irvine, U.S.A.
G. van Hoven
Affiliation:
Department of Physics, University of California, Irvine, U.S.A.

Abstract

A large-scale potential field with an embedded smaller-scale force-free structure (∇ × B = αB) is studied in cylindrical geometry. We consider cases in which α goes continuously from a constant value α0 on the axis to zero at large r. Such a choice of α(r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of º space are calculated, showing time-scales much shorter than the resistive decay time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anzer, U. 1968 Solar Phys. 3, 298.CrossRefGoogle Scholar
Baker, D. A., Burkhardt, L. C., Dimarco, J. N., Haberstich, A., Hagenson, R. L., Howell, R. B., Karr, H. J. & Schofield, A. E. 1977 Proceedings of 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, 1976, vol. 1, p. 419. IAEA.Google Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958 Proc. Roy. Soc. A 244, 17.Google Scholar
Chiuderi, C., Giachetti, R. & Van, Hoven G. 1977 Solar Phys. 54, 107.CrossRefGoogle Scholar
Christiansen, J. P. & Roberts, K. V. 1978 Nucl. Fusion, 18, 181.CrossRefGoogle Scholar
Coppi, B., Greene, J. M. & Johnson, J. L. 1966 Nucl. Fusion, 6, 101.CrossRefGoogle Scholar
Ferraro, V. C. A. & Plumption, C. 1966 An Introduction to Magneto-fluid Mechanics (2nd ed.), pp. 3748. Oxford University Press.Google Scholar
Foukal, P. V. 1976 Astrophys. J. 210, 575.CrossRefGoogle Scholar
Furth, H. P., Killeen, J. & Rosenbluth, M. M. 1963 Phys. Fluids, 6, 459.CrossRefGoogle Scholar
Furth, H. P., Rutherford, P. H. & Selberg, H. 1973 Phys. Fluids, 16, 1504.CrossRefGoogle Scholar
Giachetti, R., Van, Hoven G. & Chiuderi, C. 1977 Solar Phys. 55, 371.CrossRefGoogle Scholar
Gibson, R. D. & Whiteman, K. J. 1968 Plasma Phys. 10, 1101.CrossRefGoogle Scholar
Goedbloed, J. P. & Sakanaka, P. H. 1974 Phys. Fluids, 17, 908.CrossRefGoogle Scholar
Gowers, C. W., Robinson, D. C., Sykes, A., Verhage, A. J. L., Wesson, J. A., Watts, M. R. C. & Bodin, H. A. B. 1977 Proceedings of 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, 1976, vol. 1, p. 429. IAEA.Google Scholar
Levine, R. H. 1976 Solar Phys. 46, 159.CrossRefGoogle Scholar
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics, pp. 524–6. McGraw- Hill.Google Scholar
Newcomb, W. A. 1960 Ann. Phys. 10, 232.CrossRefGoogle Scholar
Robinson, D. C. 1978 Nucl. Fusion, 18, 939.CrossRefGoogle Scholar
Suydam, B. R. 1958 Proceedings of 2nd International Conference on the Peaceful Uses of Atomic Energy, vol. 31, p. 157. United Nations, Geneva.Google Scholar
Taylor, J. B. 1975 Proceedings of 5th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, 1974, vol. 1, p. 161. IAEA.Google Scholar
Van, Hoven G., Chiuderi, C. & Giachetti, R. 1977 Astrophys. J. 213, 869.Google Scholar
Voslamber, D. & Callebaut, D. K. 1962 Phys. Rev. 128, 2016.CrossRefGoogle Scholar