Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T02:06:06.899Z Has data issue: false hasContentIssue false

The spectrum of resistive MHD modes in cylindrical plasmas

Published online by Cambridge University Press:  13 March 2009

C. M. Ryu
Affiliation:
Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, N.J. 08544
R. C. Grimm
Affiliation:
Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, N.J. 08544

Abstract

A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfvén and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfvén spectrum. The stabilizing effect of favourable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfvén, H. & Fälthammar, C.-G. 1963 Cosmical Electrodynamics. Oxford University Press.Google Scholar
Appert, K., Gruber, R. & V´clavík, J. 1974 Phys. Fluids, 17, 1471.CrossRefGoogle Scholar
Appert, K., Balet, B., Gruber, R., Troyon, F., Tsunematsu, T. & Václavík, J. 1982 Nucl. Fusion, 22, 903.CrossRefGoogle Scholar
Bernstein, I. B., Freiman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958 Proc. Roy Soc. A 244, 17.Google Scholar
Bodin, H. A. B. & Newton, A. A. 1980 Nucl. Fusion, 20, 1255.CrossRefGoogle Scholar
Boris, J. P. 1968 Ph.D. dissertation. Princeton University.Google Scholar
Chance, M. S., Greene, J. M., Grimm, R. C. & Johnson, J. L. 1977 Nucl. Fusion, 17, 65.CrossRefGoogle Scholar
Coppi, B., Greene, J. M. & Johnson, J. L. 1966 Nucl. Fusion, 6, 101.CrossRefGoogle Scholar
Dibiase, I. A. & Killeen, J. 1977 J. Comp. Phys. 24, 158.CrossRefGoogle Scholar
Freidberg, J. P. & Hewett, D. W. 1981 J. Plasma Phys. 26, 177.CrossRefGoogle Scholar
Furth, H. P., Rutherford, P. H. & Selberg, H. 1973 Phys. Fluids, 16, 1054.CrossRefGoogle Scholar
Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963 Phys. Fluids, 6, 459.CrossRefGoogle Scholar
Glasser, A. H., Greene, J. M. & Johnson, J. L. 1975 Phys. Fluids, 18, 875.CrossRefGoogle Scholar
Glasser, A. H., Chance, M. S. & Dewar, R. L. 1979 Proceedings of 19th European Conference on Controlled Fusion and Plasma Physics, Oxford, vol. 1, p. 8.Google Scholar
Goedbloed, J. P. & Sakanaka, P. H. 1974 Phys. Fluids, 17, 908.CrossRefGoogle Scholar
Grimm, R. C., Dewar, R. L. & Manickam, J. 1983 a J. Comp. Phys. 49, 94.CrossRefGoogle Scholar
Grimm, R. C., Dewar, R. L., Manickam, J., Jardin, S. C., Glasser, A. H. & Chance, M. S. 1983 b Proceedings of 9th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Baltimore, vol. 3, p. 35. IAEA.Google Scholar
Grossman, W. & Tataronis, J. 1973 Z. Phys. 261, 217.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Rev. Lett. 32, 454.CrossRefGoogle Scholar
Johnson, J. L., Greene, J. M. & Coppi, B. 1963 Phys. Fluids, 6, 1169.CrossRefGoogle Scholar
Lehnert, B. 1954 Phys. Rev. 94, 815.CrossRefGoogle Scholar
Lundquist, S. 1949 Phys. Rev. 76, 1805.CrossRefGoogle Scholar
Manickam, J., Grimm, R. C. & Dewar, R. L. 1982 Proceedings of 10th IMACS World Congress on System Simulation and Scientific Computation, Montreal, vol. 4, 175.Google Scholar
Ryu, C.-M. 1982 Ph.D. dissertation. Princeton University.Google Scholar
Suydam, B. R. 1958 Proceedings of 2nd United Nations International Conference, Geneva, vol. 31, p. 157.Google Scholar