Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T00:51:25.731Z Has data issue: false hasContentIssue false

Solitons in a magnetized ion-beam plasma system

Published online by Cambridge University Press:  13 March 2009

B. C. Kalita
Affiliation:
Department of Mathematics, Gauhati University, Guwahati 781 014, Assam, India
M. K. Kalita
Affiliation:
IASST, Khanapara, Guwahati 781 022, Assam, India
R. P. Bhatta
Affiliation:
Department of Physics, Nalbari College, Nalbari 781 335, Assam, India

Abstract

The formation of ion-acoustic solitary waves in a magnetized plasma with stationary ions and beam ions together with inertia-less electrons is investigated. The generation of waves in a plane is assumed to be one-dimensional, in a direction inclined at an angle θ to the direction of the magnetic field, with constant drift velocity of the ion beam. Remarkably, the amplitudes of the solitons are found to attain a maximum value at a particular beam-ion velocity γ, and then decrease slightly and remain almost constant for higher γ. The width of the waves is large at small y for small beam-ion density Nb, but it attains a constant minimum value at a particular value of γ. The amplitude decreases sharply to zero with decreasing y, whereas it remains almost constantly high for larger y. It is observed that as a wave approaches the direction of the magnetic field, its amplitude increases to a constant maximum value, which is larger for higher beam-ion velocities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrol, P. S. & Tagore, S. G. 1980 Plasma Phys. 22, 831.CrossRefGoogle Scholar
Baboolal, S., Bharathram, R. & Hellberg, M. A. 1989 J. Plasma Phys. 41, 341.CrossRefGoogle Scholar
Gell, Y. & Roth, I. 1977 Plasma Phys. 19, 915.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. J. & Baker, D. R. 1979 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Kalita, B. C. & Kalita, M. K. 1990 Phys. Fluids B 2, 674.CrossRefGoogle Scholar
Okutso, E., Nakamura, M. & Roth, T. 1979 Plasma Phys. 20, 561.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol.3, p. 23. Consultants Bureau.Google Scholar
Tagare, S. G. 1973 Plasma Phys. 15, 1247.CrossRefGoogle Scholar
Tagare, S. G. 1986 J. Plasma Phys. 56, 301.CrossRefGoogle Scholar
Taniuti, T. & Wei, C. C. 1968 J. Phys. Soc. Japan 24, 941.CrossRefGoogle Scholar
Tappert, F. D. 1972 Phys. Fluids 15, 2406.CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Watanabe, W. 1984 J. Phys. Soc. Japan 53, 950.CrossRefGoogle Scholar
Zank, G. P. & McKenzie, J. F. 1988 a J. Plasma Phys. 39, 183.CrossRefGoogle Scholar
Zank, G. P. & McKenzie, J. F. 1988 b J. Plasma Phys. 39, 193.CrossRefGoogle Scholar