Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T00:38:47.417Z Has data issue: false hasContentIssue false

Single-particle motion under the influence of the perpendicular ponderomotive force

Published online by Cambridge University Press:  13 March 2009

M. C. Festeau-Barrioz
Affiliation:
Centre de Recherches en Physique des Plasmas, Association Euratom – Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, 21, Av. des Bains, CH-1007 Lausanne, Switzerland
M. L. Sawley
Affiliation:
Centre de Recherches en Physique des Plasmas, Association Euratom – Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, 21, Av. des Bains, CH-1007 Lausanne, Switzerland
J. Václavík
Affiliation:
Centre de Recherches en Physique des Plasmas, Association Euratom – Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, 21, Av. des Bains, CH-1007 Lausanne, Switzerland

Abstract

The motion of a single particle under the influence of the ponderomotive force directed perpendicular to the external magnetostatic field is analysed. By solving the exact equation of motion for a specific applied electromagnetic field, the resultant ponderomotive drift is compared with the prediction of a single-particle theory using the oscillation-centre approximation. The regime of validity of this theory is discussed. It is shown that, for certain values of the amplitude and frequency of the electromagnetic field, the particle motion is unstable and therefore the concept of a single-particle ponderomotive force is meaningless.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fader, W. J., Jong, R. A., Stufflebeam, J. H. & Sziklas, E. A. 1981 Phys. Rev. Lett. 46, 999.CrossRefGoogle Scholar
Ferron, J. R., Hershkowitz, N., Breun, R. A., Golovato, S. N. & Goulding, R. 1983 Phys. Rev. Lett. 51, 1955.CrossRefGoogle Scholar
Klíma, R. 1968 Czech. J. Phys. B18, 1280.CrossRefGoogle Scholar
McLachlan, N. W. 1964 Theory and Applications of Mathieu Functions. Dover.Google Scholar
Motz, H. & Watson, C. J. H. 1967 Adv. Electron. Electron Phys. 23, 153.CrossRefGoogle Scholar
Sawley, M. L. & Václavík, J. 1986 Comments Plasma Phys. Contr. Fusion, 10, 19.Google Scholar
Statham, G. & Ter Haar, D. 1983 Plasma Phys. 25, 681.CrossRefGoogle Scholar
Václavík, J., Sawley, M. L. & Anderegg, F. 1986 Phys. Fluids, 29, 2034.CrossRefGoogle Scholar
Watari, T. et al. 1978 Phys. Fluids, 21, 2076.CrossRefGoogle Scholar
Yasaka, Y. & Itatani, R. 1984 Nucl. Fusion, 24, 445CrossRefGoogle Scholar