Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T15:01:25.346Z Has data issue: false hasContentIssue false

Simulations of efficient laser wakefield accelerators from 1 to 100GeV

Published online by Cambridge University Press:  29 February 2012

M. TZOUFRAS
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA ([email protected])
C. HUANG
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
J. H. COOLEY
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
F. S. TSUNG
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
J. VIEIRA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
W. B. MORI
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA ([email protected]) Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA

Abstract

Optimization of laser wakefield acceleration involves understanding and control of the laser evolution in tenuous plasmas, the response of the plasma medium, and its effect on the accelerating particles. We explore these phenomena in the weakly nonlinear regime, in which the laser power is similar to the critical power for self-focusing. Using Particle-In-Cell simulations with the code QuickPIC, we demonstrate that a laser pulse can remain focused in a plasma channel for hundreds of Rayleigh lengths and efficiently accelerate a high-quality electron beam to 100GeV (25GeV) in a single stage with average gradient 3.6GV/m (7.2GV/m).

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Decker, C. D., Mori, W. B., Tzeng, K.-C. and Katsouleas, T. 1996 The evolution of ultra-intense, short-pulse lasers in underdense plasmas. Phys Plasmas 3 (5), 20472056.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24 (2), 252288.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1997 Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33 (11), 18791914.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. and Malka, V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431 (7008), 541544.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. and Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444 (7120), 737739.CrossRefGoogle ScholarPubMed
Fonseca, R. A., Martins, S. F., Silva, L. O., Tonge, J. W., Tsung, F. S. and Mori, W. B. 2008 One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations. Plasma Phys. Control. Fusion 50 (12), 124034.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T., et al. 2002 Osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma-based accelerators. In: Proceedings of International Conference on Computational Science – ICCS 2002, Amsterdam, The Netherlands, April 21–24, 2002, Part III (eds. Sloot, P. M. A., Tan, C. J. K., Dongarra, J. and Hoekstra, A. G.), Lecture Notes in Computer Science, vol. 2331. Springer, Berlin, Germany, pp. 342351.Google Scholar
Geddes, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431 (7008), 538541.CrossRefGoogle ScholarPubMed
Gordon, D. F., Hafizi, B., Hubbard, R. F., Peñano, J. R., Sprangle, P. and Ting, A. 2003 Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90 (21), 215001.CrossRefGoogle ScholarPubMed
Huang, C., Decyk, V. K., Ren, C., Zhou, M., Lu, W., Mori, W. B., Cooley, J. H., Antonsen, T. M. Jr. and Katsouleas, T. 2006 Quickpic: a highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas. J. Comput. Phys. 217 (2), 658679.CrossRefGoogle Scholar
Kalmykov, S. Y., Yi, S. A., Beck, A., Lifschitz, A. F., Davoine, X., Lefebvre, E., Khudik, V., Shvets, G. and Downer, M. C. 2011 Dark-current-free petawatt laser-driven wakefield accelerator based on electron self-injection into an expanding plasma bubble. Plasma Phys. Control. Fusion 53 (1), 014006.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M., Mori, W. B. and Katsouleas, T. 2006a Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96 (16), 165002.CrossRefGoogle ScholarPubMed
Lu, W., Huang, C., Zhou, M., Tzoufras, M., Tsung, F. S., Mori, W. B. and Katsouleas, T. 2006b A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13 (5), 056709.CrossRefGoogle Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10 (6), 061301.CrossRefGoogle Scholar
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J., et al. 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431 (7008), 535538.CrossRefGoogle ScholarPubMed
Martins, S. F., Fonseca, R. A., Lu, W., Mori, W. B. and Silva, L. O. 2010 Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in lorentz-boosted frames. Nat. Phys. 6 (4), 311316.CrossRefGoogle Scholar
Michel, P., Schroeder, C. B., Shadwick, B. A., Esarey, E. and Leemans, W. P. 2006 Radiative damping and electron beam dynamics in plasma-based accelerators. Phys. Rev. E 74 (2), 026501.CrossRefGoogle ScholarPubMed
Mora, P. and Antonsen, T. M. Jr. 1997 Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4 (1), 217229.CrossRefGoogle Scholar
Mori, W. B. 1997 The physics of the nonlinear optics of plasmas at relativistic intensities. IEEE J. Quantum Electron. 33 (11), 19421953.CrossRefGoogle Scholar
Pak, A., Marsh, K. A., Martins, S. F., Lu, W., Mori, W. B. and Joshi, C. 2010 Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104 (2), 025003.CrossRefGoogle ScholarPubMed
Pollock, B. B., Clayton, C. E., Ralph, J. E., Albert, F., Davidson, A., Divol, L., Filip, C., Glenzer, S. H., Herpoldt, K., Lu, W., et al. 2011 Demonstration of a narrow energy spread, ~0.5gev electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107 (4), 045001.CrossRefGoogle ScholarPubMed
Pukhov, A. and Gordienko, S. 2006 Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364 (1840), 623633.CrossRefGoogle ScholarPubMed
Rechatin, C., Faure, J., Davoine, X., Lundh, O., Lim, J., Ben-Ismaïl, A., Burgy, F., Tafzi, A., Lifschitz, A., Lefebvre, E., et al. 2010 Characterization of the beam loading effects in a laser plasma accelerator. New J. Phys. 12 (4), 045023.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. and Ting, A. 1990 Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41 (8), 44634469.CrossRefGoogle ScholarPubMed
Tajima, T. and Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267270.CrossRefGoogle Scholar
Tsung, F. S., Lu, W., Tzoufras, M., Mori, W. B., Joshi, C., Vieira, J. M., Silva, L. O. and Fonseca, R. A. 2006 Simulation of monoenergetic electron generation via laser wakefield accelerators for 5-25 tw lasers. Phys. Plasmas 13 (5), 056708.CrossRefGoogle Scholar
Tzoufras, M. 2008 Generation of Multi-Giga-Electron-Volt Monoenergetic Electron Beams via Laser Wakefield Acceleration, ProQuest, UMI Dissertation, Ann Arbor, MI.Google Scholar
Tzoufras, M., Lu, W., Tsung, F. S., Huang, C., Mori, W. B., Katsouleas, T., Vieira, J., Fonseca, R. A. and Silva, L. O. 2008 Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101 (14), 145002.CrossRefGoogle ScholarPubMed
Tzoufras, M., Lu, W., Tsung, F. S., Huang, C., Mori, W. B., Katsouleas, T., Vieira, J., Fonseca, R. A. and Silva, L. O. 2009 Beam loading by electrons in nonlinear plasma wakes. Phys. Plasmas 16 (5), 056705.CrossRefGoogle Scholar
Vieira, J., Fiuza, F., Fonseca, R. A., Silva, L. O., Huang, C. K., Lu, W., Tzoufras, M., Tsung, F. S., Decyk, V., Mori, W. B., et al. 2008 One-to-one full-scale simulations of laser-wakefield acceleration using quickpic. IEEE Trans. Plasma Sci. 36 (4), 17221727.CrossRefGoogle Scholar
Vieira, J., Fiúza, F., Silva, L. O., Tzoufras, M. and Mori, W. B. 2010 Onset of self-steepening of intense laser pulses in plasmas. New J. Phys. 12 (4), 045025.CrossRefGoogle Scholar
Vieira, J., Martins, S. F., Pathak, V. B., Fonseca, R. A., Mori, W. B. and Silva, L. O. 2011 Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett. 106, 225001.CrossRefGoogle ScholarPubMed