Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T13:19:52.887Z Has data issue: false hasContentIssue false

Simple magnetohydrodynamic waves

Published online by Cambridge University Press:  13 March 2009

G. Mann
Affiliation:
Astrophysikalisches Institut Potsdam, 14552 Tremsdorf, Germany

Abstract

Large-amplitude magnetic field fluctuations often accompanied by density variations are frequently observed in front of the earth's bow shock and in the vicinity of comets by extraterrestrial in situ measurements. They are identified as a manifestation of magnetohydrodynainic (MHD) waves in space plasmas. Because of their large amplitudes (i.e. because the magnetic field amplitude is of the order of the ambient magnetic field, for instance), these fluctuations cannot be satisfactorily described by linear wave theory. In this paper the properties of one-dimensional MHD waves of arbitrary amplitude, i.e. so-called simple MHD waves, are investigated, and a relationship is derived between the enhancement of the magnetic field and the density as well as the propagation velocity. Fast large-amplitude magnetosonic waves exhibit wave steepening. Here the dependence of the steepening time on the wave amplitude is derived and illustrated numerically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cohen, R. H. & Kulsrud, R. M. 1974 Phys.Fluids 17, 2215.CrossRefGoogle Scholar
Elaoufir, J., Mangeney, A., Passot, T., Harvey, C. C. & Russell, C. T. 1990 Ann. Geophys. 4, 297.Google Scholar
Fairfield, D. H. & Behannon, K. W. 1976 J. Geophys. Res. 81, 3897.CrossRefGoogle Scholar
Goldstein, M. L., Smith, C. W. & Matthaeus, W. H. 1983 J. Geophys. Res. 88, 9989.CrossRefGoogle Scholar
Hoppe, M. M. & Russell, C. T. 1981 Adv. Space Res. 1, 327.CrossRefGoogle Scholar
Hoppe, M. M. & Russell, C. T. 1983 J. Geophys. Res. 88, 2021.CrossRefGoogle Scholar
Hoppe, M. M., Russell, C. T., Frank, L. A., Eastman, T. E. & Greenstadt, E. W. 1981 J. Geophys. Res. 86, 4471.CrossRefGoogle Scholar
Kakutani, T., Kawahara, T. & Taniuti, T.Aniuti, T. 1967 J. Phys. Soc. Japan 23, 1138.CrossRefGoogle Scholar
Kantrowitz, A. & Petschek, H. E. 1966 Plasma in Theory and Application (ed.Kunkel, W. B.). McGraw-Hill. p. 148.Google Scholar
Karpman, V. I. 1975 Nonlinear Waves in Dispersive Media. Pergamon.Google Scholar
Kennel, C. F. 1985 Collisionless Shocks in the Heliosphere: Review of Current Research (ed. Tsurutani, B. T. & Stone, R. G.), p. 1. Geophysical Monograph 35, AGU.Google Scholar
Kennel, C. F., Buti, B., Hada, T. & Pellat, R. 1988 Phys. Fluids 31, 1949.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1984 Electrodynamics of Continuous Media, 2nd edn.Pergamon.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn.Pergamon.Google Scholar
Lühr, H., Klöcker, N., Oelschlägel, W., Häusler, B. & Acuna, M. 1984 IEEE Trans.Geosci. Remote Sens. 23, 259.Google Scholar
Malara, F. & Elaoufir, J. 1991 J. Geophys. Res. 96, 7641.CrossRefGoogle Scholar
Mann, G. & Lühr, H., 1991 Ann. Geophys. 9, 681.Google Scholar
Mann, G., Lühr, H. & Baumjohann, W. 1994 J. Geophys. Res. 99, 13315.CrossRefGoogle Scholar
Paschmann, G., Sckopke, N., Bame, S. J., Asbridge, J. R., Gosling, J.T., Russell, C. T. & Greenstadt, E. W. 1979 Geophys. Res. Leit. 6, 209.CrossRefGoogle Scholar
Riedler, W., Schwingenshuh, K., Yeroshenko, Ye. G., Styashkin, V. A., & Russell, C. T., 1986 Nature 321, 288.CrossRefGoogle Scholar
Russell, C. T. & Hoppe, M. M. 1983 Space Sci. Rev. 34, 155CrossRefGoogle Scholar
Scholer, M. 1993 J. Geophys. Res. 98, 47.CrossRefGoogle Scholar
Scholer, M., Fujimoto, M. & Kucharek, H. 1992 ESA J. ESA SP 346, 59.Google Scholar
Schwartz, S. J. & Burgess, D. 1991 Geophys. Res. Lett. 18, 373.CrossRefGoogle Scholar
Schwartz, S. J., Burgess, D., Wilkenson, W. P., Kessel, R. L., Dunlop, M. & Lühr, H. 1992 Geophys. Res. 97, 4209.CrossRefGoogle Scholar
Shercliff, S. A. 1960 J. Fluid Mech. 9, 481.CrossRefGoogle Scholar
Smith, E. J., Tsurutani, B. T., Slavin, J. A., Jones, D. E., Siscoe, G. L. & Mendis, D. A. 1986 Science 232, 382.CrossRefGoogle Scholar
Spangler, S. & Fuselier, S. 1988 J. Geophys. Res. 93, 845.CrossRefGoogle Scholar
Thomsen, M. F. 1985 Collisionless Shocks in the Heliosphere:Review of Current Research (ed. Tsurutani, B. T. & Stone, R. G.), p. 253. Geophysical Monograph 35, AGU.CrossRefGoogle Scholar
Thomsen, M. F., Gosling, J. T., Bame, S. J. & Russell, C. T. 1990 J. Geophys. Res. 95, 957.CrossRefGoogle Scholar
Tsurutani, B. T. 1991 Comets in the Post-Halley Era, vol. 2 (ed. Newborn, R. L. et al. ), p. 757. Kluwer.Google Scholar
Tsurutani, B. T., Smith, E. J., Matsumoto, H., Brinca, A. L. & Omidi, N., 1990 Geophys. Res. Lett. 17, 1990.Google Scholar
Tsurutani, B. T., Thorne, R. M., Smith, R. J., Gosling, J. T. & Matsumoto, H. 1987 J. Geophys. Res. 92, 11074.CrossRefGoogle Scholar