Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T13:59:51.792Z Has data issue: false hasContentIssue false

Shukla–Eliasson attractive force: Revisited

Published online by Cambridge University Press:  30 October 2012

M. AKBARI-MOGHANJOUGHI*
Affiliation:
Department of Physics, Faculty of Sciences, Azarbaijan University of Shahid Madani, 51745-406, Tabriz, Iran ([email protected])

Abstract

By investigating the dielectric response of the Fermi–Dirac plasma in the linear limit and evaluating the electrostatic potential around the positive stationary test charge, we find that the Shukla–Eliasson attractive force is present for the plasma density range expected in the interiors of large planets for a wide range of plasma atomic number. This research, which is based on the generalized electron Fermi-momentum, further confirms the existence of the newly discovered Lennard-Jones-like attractive potential and its inevitable role in plasma crystallization in the cores of planets. Moreover, it is observed that the characteristics of the attractive potential are strongly sensitive to the variation of plasma density and composition. Current research can also have applications in the study of strong laser-matter interactions and inertially confined plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2010 Propagation and head-on collisions of ion-acoustic solitons in a Thomas–Fermi magnetoplasma: relativistic degeneracy effects. Phys. Plasmas 17, 072101.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2011a Remarkable paramagnetic features of Fermi-Dirac-Pauli plasmas. Phys. Plasmas 17, 072702.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2011b Propagation of arbitrary-amplitude ion waves in relativistically degenerate electron-ion plasmas. Astrophys. Space Sci. 332, 187192.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2012a Comment on the article “Solitary waves and double layers in an ultra-relativistic degenerate dusty electron-positron-ion plasma”. [Phys. Plasmas 19, 033705, 064703.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2012b Nonlinear excitations in strongly coupled Fermi-Dirac plasmas. Phys. Plasmas 19, 042701.CrossRefGoogle Scholar
Asenjo, F. A., Muñoz, V., Valdivia, J. A. and Mahajan, S. M. 2011 A hydrodynamical model for relativistic spin quantum plasmas. Phys. Plasmas 18, 012107.CrossRefGoogle Scholar
Bohm, D. and Pines, D. 1953 A collective discription of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609625.CrossRefGoogle Scholar
Bonitz, M.Pehlke, E. and Schoof, T. 2012 On novel attractive forces between ions in quantum plasmas: failure of linearized quantum hydrodynamics. http://arxiv.org/abs/1205.4922. Accessed May 22, 2012.Google Scholar
Brodin, G. and Marklund, M. 2007 Spin magnetohydrodynamics. New J. Phys. 17, 277.CrossRefGoogle Scholar
Brodin, G.Marklund, M. and Manfredi, G. 2008 Quantum plasma effects in the classical regime. Phys. Rev. Lett. 100, 3858.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1931 The highly collapsed configurations of a stellar mass. Mon. Not. Roy. Astr. Soc. 91, 456466; 1931 Philos. Mag., 11, 992; 1933 ApJ 74, 81.CrossRefGoogle Scholar
Chandrasekhar, S. 1939 An Introduction to the Study of Stellar Structure. Chicago, IL: The University of Chicago Press.Google Scholar
Chandrasekhar, S. 1953 The pressure in the interior of a star. Mon. Not. R. Astron. Soc. 113, 667.Google Scholar
Chandrasekhar, S. 1984 On stars, their evolution and their stability. Science 226, 497505.CrossRefGoogle ScholarPubMed
Crouseilles, N., Hervieux, P. A. and Manfredi, G. 2008 Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412.CrossRefGoogle Scholar
Fowler, R. H. 1926 On dense matter. Mon. Not. Roy. Astr. Soc. 87, 114.CrossRefGoogle Scholar
Gardner, C. 1994 The quantum hydrodynamic model for semiconductor devices. SIAM, J. Appl. Math. 54, 409427.CrossRefGoogle Scholar
Haas, F. 2011 Quantum Plasmas: An Hydrodynamic Approach. New York: Springer.CrossRefGoogle Scholar
Haas, F., Eliasson, B. and Shukla, P. K. 2012 Relativistic Klein-Gordon-Maxwell multistream model for quantum plasmas. Phys. Rev. E 85, 056411.CrossRefGoogle ScholarPubMed
Haas, F., Garcia, L. G., Goedert, J. and Manfredi, G. 2003 Quantum ion-acoustic waves. Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
Itoh, N., Kohyama, Y. and Takeuchi, H. 1987 Viscosity of dense matter. ApJ 317, 733736.CrossRefGoogle Scholar
Kittel, C. 2008 Introduction to Solid State Physics, 8th Edn.New York: John Wiley.Google Scholar
Krall, N. A. and Trivelpeice, A. W. 1932 Principles of Plasma Physics. Columbus, OH: McGraw-Hill.Google Scholar
Levine, P. and Roos, O. V. 1962 Plasma theory of the many-electron atom. Phys. Rev. 125, 207213.CrossRefGoogle Scholar
Lundin, J., Marklund, M. and Brodin, G. 2008 Modified Jeans instability criteria for magnetized systems. Phys. Plasmas 15, 072116.CrossRefGoogle Scholar
Manfredi, G. 2005 How to model quantum plasmas. Fields Inst. Comm. 46, 263287.Google Scholar
Manfredi, G. and Haas, F. 2001 Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
Marklund, M. and Brodin, G. 2007 Dynamics of spin-1/2 quantum plasmas Phys. Rev. Lett. 98, 025001.CrossRefGoogle ScholarPubMed
Marklund, M., Brodin, G., Stanflo, L. and Liu, C. S. 2008 New quantum limits in plasmonic devices. Europhys. Lett. 84, 17006.CrossRefGoogle Scholar
Marklund, M. and Shukla, P. K. 2006 Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591640.CrossRefGoogle Scholar
Markowich, P. A., Ringhofer, C. A. and Schmeiser, C. 1990 Semiconductor Equations. New York: Springer-Verlag.CrossRefGoogle Scholar
Mendonça, J. T. 2011 Wave kinetics of relativistic quantum plasmas. Phys.Plasmas 18, 062101.CrossRefGoogle Scholar
Nandkumar, R. and Pethick, C. J. 1984 Transport coefficients of dense matter in the liquid metal regime. Mon. Not. R. Astron. Soc. 209, 511524.CrossRefGoogle Scholar
Pines, D. 1953 A collective discription of electron interactions: III. electron interactions in metals. Phys. Rev. 92, 626636.CrossRefGoogle Scholar
Salimullah, M., Zeba, I., Uzma, Ch. and Jamil, M. 2009 Remarkable paramagnetic features of Fermi-Dirac-Pauli plasmas. Phys. Plasmas 16, 033703.CrossRefGoogle Scholar
Salpeter, E. E. 1961 Energy and pressure of a zero-temperature plasma. ApJ 134, 669682.CrossRefGoogle Scholar
Schuch, N. and Verstraete, F. 2009 Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nature Phys. 99, 25001.Google Scholar
Shukla, P. K. and Eliasson, B. 2008 Screening and wake potentials of a test charge in quantum plasmas. Phys. Lett. A 372, 28972899.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2010 Nonlinear aspects of quantum plasma physics. Phys. Usp. 51, 53; 2011 Rev. Mod. Phys. 83, 885.Google Scholar
Shukla, P. K. and Eliasson, B. 2012 Novel attractive force between ions in quantum plasmas. Phys. Rev. Lett. 108, 165007; 2012 Phys. Rev. Lett. 108, 219902(E); 2012 Phys. Rev. Lett. 109, 019901(E).CrossRefGoogle ScholarPubMed
Shukla, P. K., Stenflo, L. and Bingham, R. 2006 Shielding of a slowly moving test charge in a quantum plasma. Phys. Lett. A 359, 218.CrossRefGoogle Scholar
Stenflo, L. and Shukla, P. K. 2010 Potential distribution around a charged dust grain in an electronegative plasma. J. Plasma Phys. 76, 673.Google Scholar
Stenflo, L., Yu, M. Y. and Shukla, P. K. 1973 Shielding of a slow test charge in a collisional plasma. Phys. Fluids 16, 450.CrossRefGoogle Scholar
Tegeback, R. and Stenflo, L. 1975 Test charge potentials in turbulent plasmas. Plasmas Phys. 17, 991.CrossRefGoogle Scholar
Vranjes, J.Pandey, B. P. and Poedts, S. 2012 On quantum plasma: a plea for a common sense. Euro Phys. Lett. 99, 25001.CrossRefGoogle Scholar