Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T11:31:49.706Z Has data issue: false hasContentIssue false

Self-magnetic insulation in plasma opening switches

Published online by Cambridge University Press:  01 December 2020

Sergey V. Loginov*
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk634055, Russia
*
Email address for correspondence: [email protected]

Abstract

The paper analyses the penetration of a magnetic field into the plasma bridge of nanosecond and microsecond opening switches. For switches with a conduction time of ~100 ns, simple formulae are derived to estimate the magnetic field velocity in collisionless and collisional plasmas. It is shown that in both cases this velocity is determined by the magnetic field rise rate to plasma density ratio raised to the power of 1/2. As the conduction time is increased to ~1 ${\rm \mu}$s, the field velocity starts to depend on the plasma aggregation by a magnetic piston. At the same time, irrespective of the conduction time, the electron flow velocity is limited by the radial drift velocity in crossed magnetic and polarization electric fields. Such a limitation suppresses the current channel conductivity with respect to the Spitzer value by a factor equal to the electron magnetization parameter raised to one or another power. On completion of the conduction phase, the rate of rise of the switch resistance is proportional to the electron drift velocity. The peak switch voltage obtained in calculations is compared with its values recorded in experiments on mega-ampere current switching. A procedure is also presented for calculating the switch parameters to obtain the maximum possible voltage in the phase of current cutoff.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braginskii, S. I. 1965 In Reviews of Plasma Physics (ed. M. A. Leontovich), vol. 1, p. 205. Consultant Bureau.Google Scholar
Cassany, B. & Grua, P. 1995 Analysis of the operating regimes of microsecond-conduction-time plasma opening switches. J. Appl. Phys. 78 (1), 6776.CrossRefGoogle Scholar
Fruchtman, A. 2017 Fast magnetic field penetration into low resistivity plasma. J. Plasma Phys. 83 (1), 595830104 (14 pp.).CrossRefGoogle Scholar
Goyer, J. R., Kortbawi, D., Childers, F. K., Sincerny, P. S., Weber, B. V., Ottinger, P. F., Commisso, R. J., Thompson, J. R. & Babineau, M. A. 1997 Plasma opening switch for DECADE. IEEE Trans. Plasma Sci. 25 (4), 176188.CrossRefGoogle Scholar
Goyer, J. R., Kortbawi, D., Sincerny, P. S., Parks, D. & Waisman, E. 1995 Scaling of voltage with cathode radius of a plasma opening switch. J. Appl. Phys. 77 (3), 23092313.CrossRefGoogle Scholar
Grossmann, J. M., Ottinger, P. F. & Mason, R. J. 1989 Current channel migration and magnetic field penetration in a perfectly conducting plasma with emitting, conducting boundaries. J. Appl. Phys. 66 (6), 23072314.CrossRefGoogle Scholar
Grossmann, J. M., Ottinger, P. F., Nery, J. M. & Drobot, A. T. 1986 Numerical simulation of a low density plasma erosion opening switch. Phys. Fluids 29 (8), 27242735.CrossRefGoogle Scholar
Kingsep, A. S., Chukbar, K. V. & Yankov, V. V. 1990 In Reviews of Plasma Physics (ed. B. B. Kadomtsev), vol. 16, p. 243. Consultant Bureau.Google Scholar
Knoepfel, H. 1970 Pulsed High Magnetic Fields. North-Holland Publishing Company.Google Scholar
Lieberman, M. A. & Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. John Wiley & Sons.CrossRefGoogle Scholar
Loginov, S. V. 2008 Energetics of pulse generators with an inductive storage and a current interrupter. Izv. Tomsk Politech. Univ. 312 (4), 109114 (in Russian).Google Scholar
Loginov, S. V. 2011 Plasma dynamics in microsecond megaampere plasma opening switches. Phys. Plasmas 18 (10), 102104 (6 pp.).CrossRefGoogle Scholar
Mosher, D., Grossmann, J. M., Ottinger, P. F. & Colombant, D. G. 1987 A self-similar model for conduction in the plasma erosion opening switch. IEEE Trans. Plasma Sci. 15 (12), 695703.CrossRefGoogle Scholar
Neri, J. M., Boller, J. R., Ottinger, P. F., Weber, B. V. & Young, F. C. 1987 High–voltage high–power operation of the plasma erosion opening switch. Appl. Phys. Lett. 50 (5), 13311333.CrossRefGoogle Scholar
Ottinger, P. F., Goldstein, S. A. & Meger, R. A. 1984 Theoretical modeling of the plasma erosion opening switch for inductive storage applications. J. Appl. Phys. 56 (8), 774784.CrossRefGoogle Scholar
Rix, W., Parks, D., Shannon, J., Thompson, J. & Waisman, E. 1991 Operation and empirical modeling of the plasma opening switch. IEEE Trans. Plasma Sci. 19 (2), 400407.CrossRefGoogle Scholar
Schumer, J. W., Swanecamp, S. B., Ottinger, P. F., Commisso, R. J., Weber, B. V., Smithe, D. N. & Ludeking, L. D. 2001 MHD-to-PIC transition for modeling of conduction and opening in a plasma opening switch. IEEE Trans. Plasma Sci. 29 (3), 479493.CrossRefGoogle Scholar
Ware, K. D., Filios, P. G., Gullickson, R. L., Rowley, J. E., Schneider, R. F., Summa, W. J. & Vitkovitsky, I. M. 1997 Inductive energy technology for pulsed intence X–ray sources. IEEE Trans. Plasma Sci. 25 (4), 160168.CrossRefGoogle Scholar
Weber, B. V., Commisso, R. J., Cooperstein, G., Grossmann, J. M., Hinshelwood, D. D., Mosher, D., Neri, J. M., Ottinger, P. F. & Stephanakis, S. J. 1987 Plasma erosion opening switch research at NRL. IEEE Trans. Plasma Sci. 15 (12), 635648.CrossRefGoogle Scholar
Weber, B. V., Commisso, R. J., Goodrich, P. J., Grossmann, J. M., Hinshelwood, D. D., Ottinger, P. F. & Swanecamp, S. B. 1995 Plasma opening switch conduction scaling. Phys. Plasmas 2 (10), 38933901.CrossRefGoogle Scholar
Weber, B. V., Commisso, R. J., Meger, R. A., Neri, J. M., Oliphant, W. F. & Ottinger, P. F. 1984 Current distribution in a plasma erosion opening switch. Appl. Phys. Lett. 45 (11), 10431045.CrossRefGoogle Scholar