Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:23:39.100Z Has data issue: false hasContentIssue false

Self-focusing of electormagnetic waves as a result of relativistic electron-mass variation

Published online by Cambridge University Press:  13 March 2009

Karl H. Spatschek
Affiliation:
Fachbereich Physik, Universität Essen, D-4300 Essen, F. R. G.

Abstract

Relativistic electron-mass variations due to the presence of intense electromagnetic radiation in the plasma cause a nonlinear refractive index. Using a variational principle the latter is obtained up to fourth order in the electric field amplitude and it is shown that nonlinear effects of the second order lead to self-focusing of a beam of radiation. By nonlinear optics considerations, the self- focusing length of an axially symmetric beam is obtained. Including higher- order dispersive effects it is shown that within the thin-beam approximation thecomplex electric field envelope obeys a cubic nonlinear Schrödinger equation with an attractive self-consistent potential. The cylindrically symmetric nonlinear Schrödinger equation predicts collapse of the radiation at the self-focusing distance. The nature of the self-focusing singularity is analysed and it is shown that higher-order nonlinearities saturate the amplitude. Then oscillations of beam radius along the axial direction occur.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S. A., Sukhorukov, L. P. & Khokhlov, R. V. 1967 Sov. Phys. Uspekhi, 10, 609.Google Scholar
Arons, J. & Max, C. 1974 Phys. Fluids, 17, 1983.CrossRefGoogle Scholar
Cohen, B. I., Mostrom, M. A., Nicholson, D. R., Kaufman, A. N. & Max, C. E. 1975 Phys. Fluids, 18, 470.CrossRefGoogle Scholar
Drake, J. F., Lee, Y. C. & Tsintsadze, N. L. 1976 Phys. Rev. Lett. 36, 31.Google Scholar
Drake, J. F., Lee, Y. C. & Nishikawa, K. 1976 Phys. Rev. Lett. 36, 196.CrossRefGoogle Scholar
Drake, J. F. & Lee, Y. C. 1976 Phys. Fluids, 19, 1772.CrossRefGoogle Scholar
Goldman, M. V. & Dubois, D. F. 1966 Ann. Phys. (N.Y.), 38, 117.CrossRefGoogle Scholar
Lin, A. T. & Tsintsadze, N. L. 1976 Phys. Fluids, 19, 708.CrossRefGoogle Scholar
Max, C. & Perkins, F. 1971 Phys. Rev. Lett. 27, 1342.CrossRefGoogle Scholar
Max, C. 1973 a Phys. Fluids, 16, 1277.CrossRefGoogle Scholar
Max, C. 1973 b Phys. Fluids, 16, 1448.Google Scholar
Max, C. E., Arons, J. & Langdon, A. B. 1974 Phys. Rev. Lett. 33, 209.CrossRefGoogle Scholar
Max, C. E. 1976 Phys. Fluids, 19, 74.CrossRefGoogle Scholar
Montgomery, D. & Tidman, D. A. 1964 Phys. Fluids, 7, 242.CrossRefGoogle Scholar
Montgomery, D. & Alexeff, I. 1966 Phys. Fluids, 9, 1362.CrossRefGoogle Scholar
Nishikawa, K. 1968 J. Phys. Soc. Japan, 24, 1152.CrossRefGoogle Scholar
Silin, V. P. 1965 Soviet Phys. JETP, 21, 1127.Google Scholar
Sluijter, F. W. & Montgomery, D. 1965 Phys. Fluids, 8, 551.CrossRefGoogle Scholar
Spatschek, K. H., Shukla, P. K. & Yu, M. Y. 1977 Physica, 90C, 292.Google Scholar
Tsintsadze, N. L. 1970 Soviet Phys. JETP, 32, 684.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Academic.Google Scholar
Zakharov, V. E. 1972 Soviet Phys. JETP, 35, 908.Google Scholar
Zakharov, V. E. & Synakh, 1975 Soviet Phys. JETP, 41, 465.Google Scholar