Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T15:12:59.406Z Has data issue: false hasContentIssue false

Self-focusing and filamentation of laser beams in collisional plasmas with finite thermal conduction

Published online by Cambridge University Press:  13 March 2009

Ghanshyam
Affiliation:
Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India
V. K. Tripathi
Affiliation:
Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India

Abstract

A Gaussian laser beam propagating through a plasma heats the electrons and creates a low-density duct via ambipolar diffusion. Thermal conduction plays an important role in temperature equilibrium when the electron mean free path λm is greater than the beam radius (λm ≥ ro). For λm ≫ ro thermal conduction suppresses any non-uniformities in electron temperature, and nonlinearity is dominated by the ponderomotive force. The plasma duct traps and focuses the laser radiation above a threshold power. As the beam size shrinks, thermal conduction becomes stronger, leading to periodic self-focusing of the beam. The laser beam is also susceptible to filamentation instability. The spatial growth rate is a monotonically increasing and saturating function of the incident intensity of the beam.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rerfences

Afshar-Rad, T., Coe, S. E., Willi, O. & Desselberger, M. 1992 Phys Fluids. 4, 1301.CrossRefGoogle Scholar
Akhmanov, S. A., Sukhorukov, A. P. & Khokhlov, R. V. 1968 Soviet Phys. Usp. 10, 609.CrossRefGoogle Scholar
Ginzburg, V. L. 1970 The Propagation of Electromagnetic Waves in Plasmas. Pergamon.Google Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas. Wiley.Google Scholar
Jones, R. D., Mean, W. C., Coggeshall, S. V., Aldrich, C. H., Nortan, J. L., Pollak, G. d. & Wallace, J. M. 1988 Phys Fluids. 31, 1249.CrossRefGoogle Scholar
Kaw, P. K., Schmidt, G. & Wilcox, T. 1973 Phys. Fluids 16, 1522.Google Scholar
Kruer, W. L. 1984 Phys. Rev. Lett. 53, 1739.Google Scholar
Laxmi, V. N. & Tripathi, V. K. 1988 Radio Sci. 32, 945.Google Scholar
Liu, C. S. & Kaw, P. K. 1976 Adv. Plasma Phys. 6, 83.Google Scholar
Liu, C. S. & Tripathi, V. K. 1986 Phys. Fluids 29, 4188.CrossRefGoogle Scholar
Max, C. E., Aarons, J. & Langdon, A. V. 1974 Phys. Rev. Lett. 33, 209.CrossRefGoogle Scholar
Palmer, A. J. 1971 Phys. Fluids 14, 2714.CrossRefGoogle Scholar
Perkins, F. W. & Goldman, M. V. 1981 J. Geophys. Res. 86, 600.Google Scholar
Perkins, F. & Valeo, E. 1974 Phys. Rev. Lett. 32, 1234.CrossRefGoogle Scholar
Sharma, A. K. & Tripathi, V. K. 1987 IEEE Trans. Plasma Sci. 15, 257.CrossRefGoogle Scholar
Sodha, M. S., Ghatak, A. K. & Tripathi, V. K. 1976 Prog. Opt. 13, 169.CrossRefGoogle Scholar
Sodha, M. S., Kaushik, S. C. & Kumar, A. 1975 Appl. Phys. 7, 187.Google Scholar
Sodha, M. S., Khanna, R. K. & Tripathi, V. K. 1973 Opto-Electronics 5, 533.CrossRefGoogle Scholar
Sodha, M. S., Patel, L. A. & Kaushik, S. C. 1979 J. Plasma Phys. 21, 1.CrossRefGoogle Scholar
Sodha, M. S. & Tripathi, V. K. 1977 Phys. Rev. A 16, 2101.CrossRefGoogle Scholar
Solem, J. C., Luk, T. S., Boyer, K. & Rhodes, C. K. 1989 IEEE J. Quant. Electron 25, 2423.CrossRefGoogle Scholar
Sun, G. Z., Ott, E., Lee, Y. C. & Guzdar, P. 1987 Phys.Fluids 30, 526.CrossRefGoogle Scholar