Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T07:52:34.731Z Has data issue: false hasContentIssue false

A second-order theory for the ion-acoustic heat flux instability

Published online by Cambridge University Press:  13 March 2009

S. Peter Gary
Affiliation:
Los Alamos Scientific Laboratory, University of California, Los Alamos, NM 87545

Abstract

A second-order theory for electrostatic instabilities driven by the free energy in the relative drifts of plasma components in an infinite homogeneous, Vlasov plasma is constructed. General expressions for the wave–particle exchange rates of momentum, energy and heat flux are derived. Under the boundary condition of constant current, new terms arise which significantly modify the conventional quasi-liner results. The theory is applied to the B = 0 ion-acoustic heat flux instability, and exchange rates are obtained which are suitable for inclusion in electron fluid models of thermal transport.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biskamp, D. & Chodura, R. 1971 Phys. Rev. Lett. 27, 1553.CrossRefGoogle Scholar
Caponi, M. A. & Davidson, R. C. 1974 Phys. Fluids, 17, 1394.CrossRefGoogle Scholar
Choi, D.-I. & Horton, W. 1974 Phys. Fluids, 17, 2048.CrossRefGoogle Scholar
Dakin, D. R., Tajima, T., Benford, G. & Rynn, N. 1976 J. Plasma Phys. 15, 175.CrossRefGoogle Scholar
Davidson, R. C. & Krall, N. A. 1977 Nucl. Fusion, 17, 1313.CrossRefGoogle Scholar
Dum, C. T., Chodura, R. & Biskamp, D. 1974 Phys. Rev. Lett. 32, 1231.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R.Bame, S. J., & Montgomery, M. D. 1973 J. Geophys. Res. 78, 3697.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J.Montgomery, M. D. & Gary, S. P., 1975 J. Geophys. Res. 80, 4181.CrossRefGoogle Scholar
Gary, S. P. 1970 J. Plasma Phys. 4, 753.CrossRefGoogle Scholar
Gary, S. P. 1978 a J. Geophys. Res. 83, 2504.CrossRefGoogle Scholar
Gary, S. P. 1978 b J. Plasma Phys. 20, 47.CrossRefGoogle Scholar
Gary, S. P. & Feldman, W. C. 1978 Phys. Fluids, 21, 72.CrossRefGoogle Scholar
Gary, S. P. & Paul, J. W. M. 1971 Phys. Rev. Lett. 26, 1097.CrossRefGoogle Scholar
Gary, S. P.Sgro, A. G. & DeSilva, A. W. 1978 Phys. Fluids, 21, 2103.CrossRefGoogle Scholar
Gray, D. R., Kilkenny, J. D., White, M. S., Blyth, P. & Hull, D. 1977 Phys. Rev. Lett. 39, 1270.CrossRefGoogle Scholar
Hasegawa, A. 1974 Rev. Geophys. Space Phys. 12, 273.CrossRefGoogle Scholar
Manheimer, W. M. 1977 Phys. Fluids, 20, 265.CrossRefGoogle Scholar
Malone, & McCrory, R. L. & Morse, R. L. 1975 Phys. Rev. Lett. 34, 721.CrossRefGoogle Scholar
Moses, G. A. & Duderstadt, J. J. 1977 Phys. Fluids, 20, 762.CrossRefGoogle Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory, §III-2. Benjamin.Google Scholar
Sleeper, A. M., Weinstock, J. & Bezzerides, B. 1973 Phys. Fluids, 16, 1508.CrossRefGoogle Scholar
Stenzel, R. L. & Gekelman, W. 1978 Phys. Rev. Lett. 40, 550.CrossRefGoogle Scholar
Weinstock, J. & Sleeper, A. M. 1975 Phys. Fluids, 18, 247.CrossRefGoogle Scholar
Wesson, J. A. & Sykes, A. 1973 Phys. Rev. Lett. 31, 449.CrossRefGoogle Scholar