Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T13:08:04.075Z Has data issue: false hasContentIssue false

Saturation of Zeldovich stretch–twist–fold map dynamos

Published online by Cambridge University Press:  13 July 2015

Amit Seta*
Affiliation:
UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagari Campus, Mumbai 400 098, India School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
Pallavi Bhat
Affiliation:
IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India
Kandaswamy Subramanian
Affiliation:
IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India
*
Email address for correspondence: [email protected]

Abstract

Zeldovich’s stretch–twist–fold (STF) dynamo provided a breakthrough in conceptual understanding of fast dynamos, including the small-scale fluctuation dynamos. We study the evolution and saturation behaviour of two types of generalized Baker’s map dynamos, which have been used to model Zeldovich’s STF dynamo process. Using such maps allows one to analyse dynamos at much higher magnetic Reynolds numbers $\mathit{Re}_{M}$ as compared to direct numerical simulations. In the two-strip map dynamo there is constant constructive folding, while the four-strip map dynamo also allows the possibility of a destructive reversal of the field. Incorporating a diffusive step parametrized by $\mathit{Re}_{M}$ into the map, we find that the magnetic field $B(x)$ is amplified only above a critical $\mathit{Re}_{M}=R_{\mathit{crit}}\sim 4$ for both types of dynamos. The growing $B(x)$ approaches a shape-invariant eigenfunction independent of initial conditions, whose fine structure increases with increasing $\mathit{Re}_{M}$ . Its power spectrum $M(k)$ displays sharp peaks reflecting the fractal nature of $B(x)$ above the diffusive scale. We explore the saturation of these dynamos in three ways: via a renormalized reduced effective $\mathit{Re}_{M}$ (case I) or due to a decrease in the efficiency of the field amplification by stretching, without changing the map (case IIa), or changing the map (case IIb), and a combination of both effects (case III). For case I, we show that $B(x)$ in the saturated state, for both types of maps, approaches the marginal eigenfunction, which is obtained for $\mathit{Re}_{M}=R_{\mathit{crit}}$ independent of the initial $\mathit{Re}_{M}=R_{M0}$ . On the other hand, in case II, for the two-strip map, we show that $B(x)$ saturates, preserving the structure of the kinematic eigenfunction. Thus the energy is transferred to larger scales in case I but remains at the smallest resistive scales in case II, as can be seen from both $B(x)$ and $M(k)$ . For the four-strip map, $B(x)$ oscillates with time, although with a structure similar to the kinematic eigenfunction. Interestingly, the saturated state in case III shows an intermediate behaviour, with $B(x)$ similar to the kinematic eigenfunction at an intermediate $\mathit{Re}_{M}=R_{\mathit{sat}}$ , with $R_{M0}>R_{\mathit{sat}}>R_{\mathit{crit}}$ . The $R_{\mathit{sat}}$ value is determined by the relative importance of the increased diffusion versus the reduced stretching. These saturation properties are akin to the range of possibilities that have been discussed in the context of fluctuation dynamos.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernet, M. L., Miniati, F., Lilly, S. J., Kronberg, P. P. & Dessauges-Zavadsky, M. 2008 Strong magnetic fields in normal galaxies at high redshift. Nature 454, 302304.Google Scholar
Bhat, P. & Subramanian, K. 2013 Fluctuation dynamos and their Faraday rotation signatures. Mon. Not. R. Astron. Soc. 429, 24692481.Google Scholar
Bhat, P. & Subramanian, K. 2014 Fluctuation dynamo at finite correlation times and the Kazantsev spectrum. Astrophys. J. 791, L34.Google Scholar
Brandenburg, A., Sokoloff, D. & Subramanian, K. 2012 Current status of turbulent dynamo theory: from large-scale to small-scale dynamos. Space Sci. Rev. 169, 123157.Google Scholar
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1209.Google Scholar
Childress, S. & Gilbert, A. D. 1995 Stretch, Twist, Fold: The Fast Dynamo. Springer.Google Scholar
Cho, J. & Ryu, D. 2009 Characteristic lengths of magnetic field in magnetohydrodynamic turbulence. Astrophys. J. 705, L90L94.Google Scholar
Clarke, T. E. 2004 Faraday rotation observations of magnetic fields in galaxy clusters. J. Korean Astron. Soc. 37, 337342.Google Scholar
Clarke, T. E., Kronberg, P. P. & Böhringer, H. 2001 A new radio-X-ray probe of galaxy cluster magnetic fields. Astrophys. J. 547, L111L114.Google Scholar
Enßlin, T. A. & Vogt, C. 2006 Magnetic turbulence in cool cores of galaxy clusters. Astron. Astrophys. 453, 447458.Google Scholar
Eyink, G. L. 2011 Stochastic flux freezing and magnetic dynamo. Phys. Rev. E 83 (5), 056405.Google Scholar
Eyink, G., Vishniac, E., Lalescu, C., Aluie, H., Kanov, K., Bürger, K., Burns, R., Meneveau, C. & Szalay, A. 2013 Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence. Nature 497, 466469.Google Scholar
Finn, J. M. & Ott, E. 1988 Chaotic flows and magnetic dynamos. Phys. Rev. Lett. 60, 760763.Google Scholar
Finn, J. M. & Ott, E. 1990 The fast kinematic magnetic dynamo and the dissipationless limit. Phys. Fluids B 2, 916926.Google Scholar
Haugen, N. E. L., Brandenburg, A. & Dobler, W. 2003 Is nonhelical hydromagnetic turbulence peaked at small scales? Astrophys. J. 597, L141L144.Google Scholar
Haugen, N. E., Brandenburg, A. & Dobler, W. 2004 Simulations of nonhelical hydromagnetic turbulence. Phys. Rev. E 70 (1), 016308.Google Scholar
Kazantsev, A. P. 1968 Enhancement of a magnetic field by a conducting fluid. Sov. J. Exp. Theor. Phys. 26, 10311034.Google Scholar
Korner, T. W. 1988 Fourier Analysis. Cambridge University Press.Google Scholar
Molchanov, S. A., Ruzmaikin, A. A. & Sokolov, D. D. 1984 A dynamo theorem. Geophys. Astrophys. Fluid Dyn. 30, 241259.Google Scholar
Schekochihin, A. A. & Cowley, S. C. 2006 Turbulence, magnetic fields, and plasma physics in clusters of galaxies. Phys. Plasmas 13 (5), 056501.Google Scholar
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L. & McWilliams, J. C. 2004 Simulations of the small-scale turbulent dynamo. Astrophys. J. 612, 276307.Google Scholar
Subramanian, K. 1999 Unified treatment of small- and large-scale dynamos in helical turbulence. Phys. Rev. Lett. 83, 29572960.Google Scholar
Subramanian, K., Shukurov, A. & Haugen, N. E. L. 2006 Evolving turbulence and magnetic fields in galaxy clusters. Mon. Not. R. Astron. Soc. 366, 14371454.Google Scholar
Tobias, S. M., Cattaneo, F. & Boldyrev, S. 2013 MHD dynamos and turbulence. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.), chap. 9, pp. 351397. Cambridge University Press.Google Scholar
Vaĭnshteĭn, S. I. & Zel’dovich, Y. B. 1972 Reviews of topical problems: Origin of magnetic fields in astrophysics (turbulent ‘dynamo’ mechanisms). Sov. Phys. Uspekhi 15, 159172.Google Scholar
Zeldovich, Y. B., Ruzmaikin, A. A. & Sokoloff, D. D. 1990 The Almighty Chance. World Scientific.Google Scholar
Zeldovich, Y. B., Ruzmaikin, A. A. & Sokolov, D. D.(Eds) 1983 Magnetic Fields in Astrophysics. The Fluid Mechanics of Astrophysics and Geophysics, vol. 3. Gordon and Breach Science.Google Scholar