Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:10:53.791Z Has data issue: false hasContentIssue false

Resonance methods for the characterization of dust particles in plasmas

Published online by Cambridge University Press:  04 May 2016

Hendrik Jung*
Affiliation:
IEAP, Christian-Albrechts-Universität, D-24098 Kiel, Germany
Franko Greiner
Affiliation:
IEAP, Christian-Albrechts-Universität, D-24098 Kiel, Germany
Oguz Han Asnaz
Affiliation:
IEAP, Christian-Albrechts-Universität, D-24098 Kiel, Germany
Jan Carstensen
Affiliation:
ABB Switzerland Ltd, CH-5405 Baden-Daettwil, Switzerland
Alexander Piel
Affiliation:
IEAP, Christian-Albrechts-Universität, D-24098 Kiel, Germany
*
Email address for correspondence: [email protected]

Abstract

The fundamentals of the ‘resonance method’ are presented. The method relies on evaluating the dynamic response of one or more dust particles in the sheath of a laboratory plasma to small external perturbations. It allows one to make in situ high-precision measurements of particle properties. It is shown that the particle mass and charge and the strength of the interaction between two particles can be measured. Technical requirements, limitations and application examples are presented and discussed.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carstensen, J., Greiner, F., Block, D., Schablinski, J., Miloch, W. J. & Piel, A. 2012 Charging and coupling of a vertically aligned particle pair in the plasma sheath. Phys. Plasmas 19, 033702.Google Scholar
Carstensen, J., Haase, F., Jung, H., Tadsen, B., Groth, S., Greiner, F. & Piel, A. 2013 Probing the plasma sheath by the continuous mass loss of microparticles. IEEE Trans. Plasma Sci. 41, 764768.Google Scholar
Carstensen, J., Jung, H., Greiner, F. & Piel, A. 2011 Mass changes of microparticles in a plasma observed by a phase-resolved resonance method. Phys. Plasmas 18, 033701.Google Scholar
Crocker, J. C. & Grier, D. G. 1996 Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298310.Google Scholar
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710733.Google Scholar
Feng, Y., Goree, J. & Liu, B. 2007 Accurate particle position measurement from images. Rev. Sci. Instrum. 78, 053704.CrossRefGoogle ScholarPubMed
Havnes, O., Nitter, T., Tsytovich, V., Morfill, G. E. & Hartquist, T. 1994 On the thermophoretic force close to walls in dusty plasma experiments. Plasma Sources Sci. Technol. 3, 448450.Google Scholar
Homann, A., Melzer, A. & Piel, A. 1999 Measuring the charge on single particles by laser-excited resonances in plasma crystals. Phys. Rev. E 59, R3835R3838.Google Scholar
Ivanov, Y. & Melzer, A. 2007 Particle positioning techniques for dusty plasma experiments. Rev. Sci. Instrum. 78, 033506.Google Scholar
Jung, H., Greiner, F., Asnaz, O. H., Carstensen, J. & Piel, A. 2015 Exploring the wake of a dust particle by a continuously approaching test grain. Phys. Plasmas 22, 053702.Google Scholar
Killer, C., Mulsow, M. & Melzer, A. 2015 Spatio-temporal evolution of the dust particle size distribution in dusty argon rf plasmas. Plasma Sources Sci. Technol. 24, 025029.Google Scholar
Kong, J., Hyde, T. W., Harris, B., Qiao, K. & Carmona-Reyes, J. 2009 Measurement of the vertical nonuniformity of the plasma sheath in a complex plasma. IEEE Trans. Plasma Sci. 37, 16201625.Google Scholar
Lampe, M., Joyce, G. & Ganguli, G. 2005 Structure and dynamics of dust in streaming plasma: dust molecules, strings, and crystals. IEEE Trans. Plasma Sci. 33, 5769.Google Scholar
Melandsø, F. & Goree, J. 1995 Polarized supersonic plasma flow simulation for charged bodies such as dust particles and spacecraft. Phys. Rev. E 52, 5312.Google Scholar
Melzer, A., Schweigert, V. A. & Piel, A. 1999 Transition from attractive to repulsive forces between dust molecules in a plasma sheath. Phys. Rev. Lett. 83, 31943197.Google Scholar
Melzer, A., Schweigert, V. A. & Piel, A. 2000 Measurement of the wakefield attraction for ‘dust plasma molecules’. Phys. Scr. 61, 494501.CrossRefGoogle Scholar
Melzer, A., Schweigert, V. A., Schweigert, I. V., Homann, A., Peters, S. & Piel, A. 1996 Structure and stability of the plasma crystal. Phys. Rev. E 54, R46R49.Google ScholarPubMed
Melzer, A., Trottenberg, T. & Piel, A. 1994 Experimental determination of the charge on dust particles forming Coulomb lattices. Phys. Lett. A 191, 301308.Google Scholar
Miloch, W. J., Kroll, M. & Block, D. 2010 Charging and dynamics of a dust grain in the wake of another grain in flowing plasmas. Phys. Plasmas 17, 103703.Google Scholar
Nambu, M., Vladimirov, S. V. & Shukla, P. K. 1995 Attractive forces between charged particulates in plasmas. Phys. Lett. A 203, 4042.Google Scholar
Pavlu, J., Velyhan, A., Richterova, I., Nemecek, Z., Safrankova, J., Cermak, I. & Zilavy, P. 2004 Mass-loss rate for MF resin microspheres. IEEE Trans. Plasma Sci. 32, 704708.Google Scholar
Prior, N. J., Mitchell, L. W. & Samarian, A. A. 2003 Determination of charge on vertically aligned particles in a complex plasma using laser excitations. J. Phys. D: Appl. Phys. 36, 12491253.Google Scholar
Schmidt, C. & Piel, A. 2015 Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath. Phys. Rev. E 92, 043106.Google Scholar
Schweigert, V. A., Schweigert, I. V., Melzer, A., Homann, A. & Piel, A. 1996 Alignment and instability of dust crystals in plasmas. Phys. Rev. E 54, 41554166.Google ScholarPubMed
Takahashi, K., Oishi, T., Shimomai, K., Hayashi, Y. & Nishino, S. 1998 Analyses of attractive forces between particles in Coulomb crystal of dusty plasmas by optical manipulations. Phys. Rev. E 58, 78057811.Google Scholar
Trottenberg, T., Melzer, A. & Piel, A. 1995 Measurement of the electric charge on particulates forming Coulomb crystals in the sheath of a radiofrequency plasma. Plasma Sources Sci. Technol. 4, 450458.CrossRefGoogle Scholar
Whipple, E. C. 1981 Potentials of surfaces in space. Rep. Prog. Phys. 44, 1197.CrossRefGoogle Scholar
Zafiu, C., Melzer, A. & Piel, A. 2001 Nonlinear resonances of particles in a dusty plasma sheath. Phys. Rev. E 63, 066403.Google Scholar
Zeuner, M., Meichsner, J. & Poll, H.-U. 1995 Oxidative decomposition of polymethylmethacrylate (PMMA) in plasma etching. Plasma Sources Sci. Technol. 4, 406415.CrossRefGoogle Scholar