Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T13:03:33.256Z Has data issue: false hasContentIssue false

Relativistic charge currents in oblique electric and magnetic fields

Published online by Cambridge University Press:  13 March 2009

Fulvio Melia
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, U.S.A.
Marco Fatuzzo
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, U.S.A.

Abstract

Runaway processes on neutron stars leading to the sudden release of large quantities of energy (up to of order 1040 erg) on time scales as short as a fraction of a second involve plasma heating and particle acceleration in superstrong magnetic fields H (of order 1012 G). These transient events are interesting from a theoretical standpoint because they require knowledge of particle transport properties in low-density plasmas (εe ≲ 1025 cm−3) threaded by both electric (E) and magnetic fields. The evaluation of matrix elements involving solutions to the Dirac equation for such a field configuration is often difficult and sometimes impossible, since no completely normalized wave function has yet been found. Here it is shown that, in the special case of E/H ≲ 10−4, a simplification of the overlap integrals permits an analytical integration that yields explicit expressions for the relativistic charge currents needed in the computation of the anisotropic conductivity tensor when E.H ≠ 0. The application of these results to the evaluation of the conductivity is briefly discussed. Among other things, this work is relevant to a theory of resistive magnetic tearing instabilities in a quantizing field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fano, U. 1957 Rev. Mod. Phys. 29, 74.CrossRefGoogle Scholar
Fenimore, E. E. et al. 1988 Astrophys. J. Lett. 335, L71.CrossRefGoogle Scholar
Harding, A. K. & Preece, R. D. 1989 Astrophys. J. Lett. 338, L21.CrossRefGoogle Scholar
Holz, A. 1970 Nuovo Cimento Lett. 4, 26.CrossRefGoogle Scholar
Hueter, G. J. 1984 High Energy Transients in Astrophysics (ed. Woosley, S. E.), p. 373. AIP.Google Scholar
Lyne, A. G. R., Manchester, R. N. & Taylor, J. H. 1985 Mon. Not. R. Astron. Soc. 213, 613.CrossRefGoogle Scholar
Mazets, E. P., Golenetskii, S. V., Aptekar', R. L., Gur'yan, Yu. A. & Il'inskii, V. N. 1981 Nature, 290, 378.CrossRefGoogle Scholar
Melia, F. 1988 Astrophys. J. Lett. 334, L9.CrossRefGoogle Scholar
Melia, F. & Fatuzzo, M. 1989 Astrophys. J. 346, 378.CrossRefGoogle Scholar
Melia, F. & Fatuzzo, M. 1990 a Astrophys. J. 373, 180.Google Scholar
Melia, F. & Fatuzzo, M. 1990 b Nuovo Cimento (in press).Google Scholar
Melia, F. & Fatuzzo, M. 1990 c Phys. Rev. D. 43, 319.CrossRefGoogle Scholar
Murakami, T. et al. 1988 Nature, 335, 234.CrossRefGoogle Scholar
Rappaport, S. & Joss, P. C. 1977 Nature, 266, 683.CrossRefGoogle Scholar
Ruderman, M. A. 1987 Proceedings of 13th Texas Symposium on Relativistic Astrophysics (ed. Ulmer, M. P.), p. 448. World Scientific.Google Scholar
Trümper, J., Pietsch, W., Reppin, C., Voges, W., Staubert, R. & Kendziorra, E. 1978 Astrophys. J. Lett. 219, L105.CrossRefGoogle Scholar
Wang, J. C. L. et al. 1989 BAAS, 20, 1054.Google Scholar
Wheaton, W. A. et al. 1979 Nature, 282, 240.CrossRefGoogle Scholar