Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T13:26:08.379Z Has data issue: false hasContentIssue false

The ray tracing treatment of the oblique echo model for the topside upper hybrid resonance

Published online by Cambridge University Press:  13 March 2009

E. J. Parkes
Affiliation:
Department of Mathematics, University of Strathclydo, Glasgow

Abstract

The oblique echo model for the resonance near the local upper hybrid frequency fT observed by topside sounders involves the propagation of slow waves away from the sounder, which later return as echoes after refiexion due to an electron density gradient. The model is investigated by using ray tracing techniques. Use of Poeverlein constructions gives some idea as to the qualitative nature of the rays which contribute to the resonance. A quantitative description requires the use of ray-trajectory equations. By using a simple approximate warm electromagnetic dispersion relation (which, nevertheless, retains all the important features of the exact dispersion relation), the ray-trajectory equations are integrated analytically for the case of a stratified plasma with a linear density gradient. These equations are used to investigate the behaviour of the frequency of the received echoes as a function of delay time. The resonance exhibits strikingly different characteristics for fT<2fH and fT>2fH respectively, where fH is the electron gyrofrequency. For fT<2fH the resonance is ‘strong’, the receiver observing a continuous response consisting of two echoes which interfere to give a fringe pattern. Some typical ray paths are illustrated. For fT<2fH the resonance is ‘weak’ and without fringes. A condition is derived for the existence of intercepting ray paths and for the maximum time delay that occurs when they do exist.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, M. K. & Fang, M. T. C. 1971 J. Plasma Phys. 6, 579.CrossRefGoogle Scholar
Benson, R. F. 1971 J. Geophys. Res. 76, 1083.CrossRefGoogle Scholar
Bitoun, J., Graff, P. & Aubry, M. 1970 Radio Sci. 5, 1341.CrossRefGoogle Scholar
Budden, K. G. 1961 Radio Waves in the Ionosphere. Cambridge University Press.Google Scholar
Calvert, W. & VanZandt, T. E. 1966 J. Geophys. Res. 71, 1799.CrossRefGoogle Scholar
Deering, W. D. & Fejer, J. A. 1965 Phys. Fluids, 8, 2066.CrossRefGoogle Scholar
Dougherty, J. P. & Monaghan, J. J. 1965 Proc. Roy. Soc. A, 289, 214.Google Scholar
Fang, M. T. C. & Andrews, M. K. 1971 J. Plasma Phys. 6, 567.CrossRefGoogle Scholar
Fejer, J. A. & Yu, W. M. 1969 J. Plasma Phys. 3, 227.CrossRefGoogle Scholar
Fejer, J. A. & Yu, W. M. 1970 J. Geophys. Res. 75, 1919.CrossRefGoogle Scholar
Feldstein, R. & Graff, P. 1972 J. Qeophys. Res. 77, 1896.CrossRefGoogle Scholar
Graff, P. 1970 J. Geophys. Res. 75, 7193.CrossRefGoogle Scholar
Graff, P. 1971a J. Geophys. Res. 76, 1060.CrossRefGoogle Scholar
Graff, P. 1971b J.Plasma Phys. 5, 427.CrossRefGoogle Scholar
McAfee, J. R. 1968 J. Geophys. Res. 73, 5577.CrossRefGoogle Scholar
McAfee, J. R. 1969a J. Geophys. Res. 74, 802.CrossRefGoogle Scholar
McAfee, J. R. 1969b J. Geophys. Res. 74, 6403.CrossRefGoogle Scholar
McAfee, J. R. 1970 J. Geophys. Res. 75, 4287.CrossRefGoogle Scholar
McAfee, J. R., Thompson, T. L., Calvert, W. & Warnock, J. M. 1972 J. Geophys. Res. 77, 5542.CrossRefGoogle Scholar
Muldrew, D. B. 1972a J. Geophys. Res. 77, 1794.CrossRefGoogle Scholar
Muldrew, D. B. 1972b Radio Sci. 7, 779.CrossRefGoogle Scholar
Muldrew, D. B. & Estabrooks, M. F. 1972 Radio Sci. 7, 579.CrossRefGoogle Scholar
Parkes, E. J. 1974a J. Plasma Phys. (To be published.)Google Scholar
Parkes, E. J. 1974b J. Plasma Phys. (To be published.)Google Scholar
Sitenko, A. G. & Spepanov, K. N. 1957 Soviet Phys. JETP, 4, 512.Google Scholar
Warnock, J. M. 1969 Proc. IEEE, 57, 1135.CrossRefGoogle Scholar
Warnock, J. M., McAfee, J. R. & Thompson, T. L. 1970 J. Geophys. Res. 75, 7272.CrossRefGoogle Scholar