Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T15:17:56.265Z Has data issue: false hasContentIssue false

Quantum plasmadynamics: role of the electron self-energy and the vertex correction

Published online by Cambridge University Press:  13 March 2009

D. B. Melrose
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, New South Wales 2006, Australia
S. J. Hardy
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, New South Wales 2006, Australia

Abstract

The linear response 4-tensor for a relativistic quantum electron gas may be calculated by reinterpreting the electron propagator in the expression for the vacuum polarization tensor as statistical averages over the electron gas. We apply a similar procedure to two other radiative corrections: the electron self-energy and the vertex correction. When the photon propagator in these expressions is interpreted as a statistical average over a distribution of waves in the medium, these radiative corrections lead to a relativistic quantum expression for the ponderomotive force and to a new class of ‘hybrid’ emission processes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, A. 1986 Covariant ponderomotive Hamiltonian. J. Plasma Phys. 35, 257266.Google Scholar
Arunasalam, V. 1969 Transverse dielectric tensor for a free-electron gas in a uniform magnetic field. J. Math. Phys. 10, 13051313.CrossRefGoogle Scholar
Bechler, A. 1981 QED at finite temperature and density. Ann. Phys. (NY) 135, 1957.Google Scholar
Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. 1982 Quantum Electrodynamics, 2nd edn.Pergamon Press, Oxford.Google Scholar
Bonch-Bruevich, V. L. 1959 On the theory of thermal Green functions. Soviet Phys. Dokl. 4, 596600.Google Scholar
Dewar, R. L. 1977 Energy-momentum tensors for dispersive electromagnetic waves. Aust. J. Phys. 30, 533575.CrossRefGoogle Scholar
Fetter, A. L. & Walecka, J. D. 1971 Quantum Theory of Many Particle Systems. McGraw-Hill, New York.Google Scholar
Fradkin, E. S. 1959 The Green's function method in quantum statistics. Soviet Phys. JETP 9, 912919.Google Scholar
Ginzburg, V. L. 1940 The quantum theory of radiation of an electron uniformly moving in a medium. J. Phys. (USSR) 2, 441452.Google Scholar
Hayes, L. M. & Melrose, D. B. 1984 Dispersion in a relativistic quantum gas. I. General dispersion functions. Aust. J. Phys. 37, 615637.Google Scholar
Jauch, J. M. & Rohrlich, F. 1975 The Theory of Photons and Electrons. Springer-Verlag, Berlin.Google Scholar
Kogan, Sh. M. 1959 On thermal quantum Green functions. Soviet Phys. Dokl. 4, 604608.Google Scholar
Kowalenko, V., Frankel, N. E. & Hines, K. C. 1985 Response theory of particle-antiparticle plasmas. Phys. Rep. 126, 109187.CrossRefGoogle Scholar
Kuijpers, J. & Melrose, D. B. 1985 Nonexistence of two forms of turbulent bremsstrahlung. Astrophys. J. 294, 2839.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1984 Electrodynamics of Continuous Media, 2nd edn.Pergamnon Press, Oxford.Google Scholar
Lou, Q. & Melrose, D. B. 1993 Covariant formulation of the ponderomotive force. Aust. J. Phys. 46, 503521.Google Scholar
Manheimer, W. M. 1985 A covariant deviation of the ponderomotive force. Phys. Fluids 28, 1569.CrossRefGoogle Scholar
Melrose, D. B. 1972 A classical counterpart to double Compton scattering. Nuovo Cim. 7A, 669686.Google Scholar
Melrose, D. B. 1973 A covaiant formulation of wave dispersion. Plasma Phys. 15, 99106.Google Scholar
Melrose, D. B. 1974 A relativistic quantum theory for processes in collisionless plasmas.Plasma Phys. 16, 845864.CrossRefGoogle Scholar
Melrose, D. B. 1980 Plasma Astrophysics, Vol. II. Gordon and Breach, New York.Google Scholar
Melrose, D. B. 1982 Covariant description of dispersion in a relativistic thermal electron gas. Aust. J. Phys. 35, 4152.CrossRefGoogle Scholar
Melrose, D. B. 1986 Instabilities in Space and Laboratory Plasmas. Cambridge University Press.CrossRefGoogle Scholar
Melrose, D. B. & Hayes, L. M. 1984 Dispersion in a relativistic quantum gas. II. Thermal distributions. Aust. J. Phys. 37, 639650.Google Scholar
Melrose, D. B. & Kuijpers, J. 1984 Resonant parts of nonlinear response tensors. J. Plasma Phys. 32, 239253.Google Scholar
Melrose, D. B. & Kuijpes, J. 1987 On the controversy concerning turbulent bremsstrahlung. Astrophys. J. 323, 338345.CrossRefGoogle Scholar
Svetozarova, G. I. & Tsytovich, V. N. 1962 Spatial dispersion of relativistic plasma in a magnetic field. Izv. Vys. Uch. Zav. Rad. 15, 658670.Google Scholar
Tsytovich, V. N. 1961 Spatial dispersion in a relativistic plasma. Sov. Phys. JETP 15, 12491256.Google Scholar
Tsytovich, V. N. 1962 Macroscopic mass renormalization and energy losses of charged particles in a medium. Soviet Phys. JETP 15, 320326.Google Scholar
Tsytovich, V. N., Stenflo, L. & Wilhelmsson, H. 1975 Current flow in ion-acoustic and Langmuir turbulence plasma interaction. Physica Scripta 11, 251257.Google Scholar
Weldon, H. A. 1982 Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D26, 13941407.Google Scholar