Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T06:34:05.905Z Has data issue: false hasContentIssue false

Proposal of a new principle of cyclotron emission from neutralized electron beams

Published online by Cambridge University Press:  01 August 2007

KAZUO MINAMI
Affiliation:
Faculty of Engineering, Tokyo Denki University, Chiyoda-Ku, Tokyo 101-8457, Japan ([email protected])
YADUVENDRA CHOYAL
Affiliation:
School of Physics, Devi Ahilya University, Indore 452 017, India
TSUGUHIRO WATANABE
Affiliation:
Professor Emeritus, National Institute for Fusion Science, Toki City 509-5292, Japan

Abstract

Radiation from a loosely constrained cyclotron motion of mono-energetic electrons on a common large orbit (LO) circle in a uniform axial magnetic field and in a right-hand circularly polarized field of plane electromagnetic waves has been studied numerically by particle simulation. A restoring force caused by neutralizing ions against the displacements of gyrating electrons from the original LO circle is introduced by a phenomenological potential well in the radial direction. It is shown that, in high-density beams such as ωb2 ≫~Ω2, Cherenkov instability in the azimuthal direction with ω <~ω+Vzkz leads to the excitation of microwaves. Here, ωb, ~ω, ω, Vz and kz are, respectively, relativistic beam plasma frequency, relativistic electron cyclotron frequency, oscillation angular frequency, axial component of beam velocity and axial wavenumber.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barker, R. J. and Schamiloglu, E. 2001 High-power Microwave Sources and Technologies. New York: IEEE Press.CrossRefGoogle Scholar
[2]Schneider, J. 1959 Phys. Rev. Lett. 2, 504505.CrossRefGoogle Scholar
[3]Hirshfield, J. L. and Wachtel, J. M. 1964 Phys. Rev. Lett. 12, 533536.CrossRefGoogle Scholar
[4]Petelin, M. I. and Yulpatov, V. K. 1975 Radiophys. Quantum Electron. 18, 212219.CrossRefGoogle Scholar
[5]Sprangle, P. and Drobot, A. T. 1977 IEEE Trans. Microwave Theory Techniques 25, 528544.CrossRefGoogle Scholar
[6]Chu, K. R. and Hirshfield, J. L. 1978 Phys. Fluids 21, 461466.CrossRefGoogle Scholar
[7]Charbit, P., Herscovici, A. and Mourier, G. 1981 Int. J. Electron. 51, 303330.CrossRefGoogle Scholar
[8]Lau, Y. Y. 1982 IEEE Trans. Electron Devices 29, 320335.CrossRefGoogle Scholar
[9]Lawson, W. and Striffler, C. D. 1986 Phys. Fluids 29, 16821694.CrossRefGoogle Scholar
[10]Yoon, P. H. and Davidson, R. C. 1987 Phys. Rev. A 35, 26192630.CrossRefGoogle Scholar
[11]Choyal, Y., Watanabe, T. and Minami, K. 2004 IEEE Trans. Plasma Sci. 32, 12981309.CrossRefGoogle Scholar
[12]Bratman, V. L., Ginzburg, N. S., Nusinovich, G. S., Petelin, M. I. and Strelkov, P. S. 1981 Int. J. Electron. 51, 541567.CrossRefGoogle Scholar
[13]Bekefi, G. 1966 Radiation Processes in Plasmas. New York: John Wiley & Sons, p. 177.Google Scholar
[14]Allis, W. P., Buchsbaum, S. J. and Bers, A. 1963 Waves in Anisotropic Plasmas. Cambridge, MA: MIT Press, p. 27.Google Scholar
[15]Sarafyan, D. 1972 J. Math. Anal. Appl. 40, 436445.CrossRefGoogle Scholar
[16]Minami, K., Saito, M., Choyal, Y., Maheshwari, K. P. and Granatstein, V. L. 2002 IEEE Trans. Plasma Sci. 30, 11341146.CrossRefGoogle Scholar
[17]Chen, F. F. 1984 Introduction to Plasma Physics and Controlled Fusion, 2nd edn. New York: Plenum Press, p. 211.CrossRefGoogle Scholar
[18]Destler, W. W., Romero, H., Striffler, C. D., Weiler, R. L. and Namkung, W. 1981 J. Appl. Phys. 52, 27402749.CrossRefGoogle Scholar
[19]Matsubara, A., Watanabe, T., Sugimoto, T., Sudo, S. and Sato, K. 2005 J. Nucl. Mater. 337–339, 181185.CrossRefGoogle Scholar