Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T02:46:27.587Z Has data issue: false hasContentIssue false

Properties of toroidal magnetic fields in axial plasma flow on the PF-1000U plasma focus facility

Published online by Cambridge University Press:  16 November 2020

V. I. Krauz*
Affiliation:
National Research Centre ‘Kurchatov Institute’, pl. Akademika Kurchatova 1, 123182Moscow, Russia
K. N. Mitrofanov
Affiliation:
Troitsk Institute for Innovation and Fusion Research, Pushkovykh St. 12, 108840Moscow, Troitsk, Russia
M. Paduch
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery St. 23, 01-497Warsaw, Poland
K. Tomaszewski
Affiliation:
ACS Ltd., Hery St. 23, 01-497Warsaw, Poland
A. Szymaszek
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery St. 23, 01-497Warsaw, Poland
E. Zielinska
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery St. 23, 01-497Warsaw, Poland
V. I. Pariev
Affiliation:
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt 53, Moscow119991, Russia
V. S. Beskin
Affiliation:
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt 53, Moscow119991, Russia Moscow Institute of Physics and Technology, Institutsky Per., 9, Dolgoprudny141700, Russia
Ya. N. Istomin
Affiliation:
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt 53, Moscow119991, Russia Moscow Institute of Physics and Technology, Institutsky Per., 9, Dolgoprudny141700, Russia
*
Email address for correspondence: [email protected]

Abstract

This paper presents the results of studies of plasma flow parameters on the PF-1000U facility. A distinctive feature of this facility is the ability to create profiled initial gas distributions using gas puffs. In the experiments described, a combined system for filling the vacuum chamber with a working gas was used, in which an additional injection of various gases (deuterium, helium, neon and their mixtures) into the axial region of the chamber prefilled with deuterium was performed using a pulse valve. Thus, both the pinching processes and, accordingly, the generation of axial plasma flows and the conditions of their propagation in the background gas of the facility chamber were affected. Regimes with the generation of compact stable plasma formations propagating over long distances were found. The results obtained can be used in laboratory modelling of astrophysical jets from young stellar objects.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertazzi, B., Ciardi, A., Nakatsutsumi, M., Vinci, T., Béard, J., Bonito, R., Billette, J., Borghesi, M., Burkley, Z., Chen, S. N., et al. 2014 Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science 346, 325328.CrossRefGoogle ScholarPubMed
Ampleford, D. J., Lebedev, S. V., Ciardi, A., Bland, S. N., Bott, S. C., Chittenden, J. P., Hall, G., Jennings, C. A., Armitage, J., Blyth, G., et al. 2005 Formation of working surfaces in radiatively cooled laboratory jets. Astrophys. Space Sci. 298, 241246.CrossRefGoogle Scholar
Bally, J. 2007 Jets from young stars. Astrophys. Space Sci. 311, 1524.CrossRefGoogle Scholar
Bellan, P. M. 2018 Experiments relevant to astrophysical jets. J. Plasma Phys. 84, 755840501.CrossRefGoogle Scholar
Belyaev, V. S., Bisnovatyi-Kogan, G. S., Gromov, A. I., Zagreev, B. V., Lobanov, A. V., Matafonov, A. P., Moiseenko, S. G. & Toropina, O. D. 2018 Numerical simulations of magnetized astrophysical jets and comparison with laboratory laser experiments. Astron. Rep. 62, 162182.CrossRefGoogle Scholar
Beskin, V. S. 2010 a Magnetohydrodynamic models of astrophysical jets. Phys.-Uspekhi 53, 11991233.CrossRefGoogle Scholar
Beskin, V. S. 2010 b MHD Flows in Compact Astrophysical Objects, p. 426. Springer.CrossRefGoogle Scholar
Beskin, V. S., Chernoglazov, A. V., Kiselev, A. M. & Nokhrina, E. E. 2017 b On the internal structure of relativistic jets collimated by ambient gas pressure. Mon. Not. R. Astron. Soc. 472, 39713978.CrossRefGoogle Scholar
Beskin, V. S., Istomin, Ya. N., Kiselev, A. M., Krauz, V. I., Mitrofanov, K. N., Myalton, V. V., Nokhrina, E. E., Sob'yanin, D. N. & Kharrasov, A. M. 2017 a Simulation of nonrelativistic jet ejections during the laboratory studies. Radiophys. Quantum Electron. 59, 900910.CrossRefGoogle Scholar
Coffey, D., Bacciotti, F., Ray, T. P., Eislöffel, J. & Woitas, J. 2007 Further indications of jet rotation in new ultraviolet and optical Hubble space telescope STIS spectra. Astrophys. J. 663, 350364.CrossRefGoogle Scholar
Filippov, N. V., Filippova, T. I. & Vinogradov, V. P. 1962 Dense high-temperature plasma in the region of non-cylindrical cumulation of Z-pinch. Nucl. Fusion: Suppl. Pt 2, 577.Google Scholar
Foster, J. M., Wilde, B. H., Rosen, P. A., Williams, R. J. R., Blue, B. E., Coker, R. F., Drake, R. P., Frank, A., Keiter, P. A., Khokhlov, A. M., et al. 2005 High-energy-density laboratory astrophysics studies of jets and bow shocks. Astrophys. J. 634, L77L80.CrossRefGoogle Scholar
Frank, A., Ray, T. P., Cabrit, S., Hartigan, P., Arce, H. G., Bacciotti, F., Bally, J., Benisty, M., Eislöffel, J., Güdel, M., et al. 2014 Jets and outflows from star to cloud: observations confront theory. In Protostars and Planets VI (ed. Beuter, H., Klessen, R. S., Dullemond, C. P. & Henning, T.), pp. 451474. University of Arizona Press.Google Scholar
Hanley, H. J. M., McCarty, R. D. & Intemann, H. 1970 The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. J. Res. Natl Bur. Stand. A 74A (3), 331353.CrossRefGoogle ScholarPubMed
Heyvaerts, J. 1996 Rotating MHD winds. In Plasma Astrophysics (ed. Chiuderi, C. & Einaudi, G.), Lecture Notes in Physics, Springer, vol. 468, pp. 3176.CrossRefGoogle Scholar
Krauz, V. I., Myalton, V. V., Vinogradov, V. P., Velikhov, E. P., Ananyev, S. S., Dan'ko, S. A., Kalinin, Yu. G., Kharrasov, A. M., Vinogradova, Yu. V., Mitrofanov, K. N., et al. 2017 Laboratory simulations of astrophysical jets: results from experiments within the PF-3, PF-1000U, and KPF-4 facilities. J. Phys.: Conf. Ser. 907, 012026.Google Scholar
Krauz, V. I., Beskin, V. S. & Velikhov, E. P. 2018 Laboratory simulation of astrophysical jets within facilities of plasma focus type. Intl J. Mod. Phys. D 27, 1844009.CrossRefGoogle Scholar
Krauz, V. I., Levashova, M. G., Karakin, M. A., Krokhin, O. N., Lisitsa, V. S., Mokeev, A. N., Myalton, V. V., Nikulin, V. Y., Oginov, A. V., Smirnov, V. P., et al. 2008 Influence of the radiation of the plasma-focus current sheath on the implosion dynamics of condensed targets. Plasma Phys. Rep. 34, 4351.CrossRefGoogle Scholar
Krauz, V. I., Mitrofanov, K. N., Voitenko, D. A., Astapenko, G. I., Markoliya, A. I. & Timoshenko, A. P. 2019 Laboratory simulations of the radial distribution of the toroidal magnetic field in an axial jet from a young stellar object. Astron. Rep. 63, 146160.CrossRefGoogle Scholar
Krauz, V. I., Paduch, M., Tomaszewski, K., Mitrofanov, K. N., Kharrasov, A. M., Szymaszek, A. & Zielinska, E. 2020 Generation of compact plasma objects in plasma focus discharge. EPL 129, 15003.CrossRefGoogle Scholar
Kubes, P., Krauz, V., Mitrofanov, K., Paduch, M., Scholz, M., Piszarzcyk, T., Chodukowski, T., Kalinowska, Z., Karpinski, L., Klir, D., et al. 2012 Correlation of magnetic probe and neutron signals with interferometry figures on the plasma focus discharge. Plasma Phys. Control. Fusion 54, 105023.CrossRefGoogle Scholar
Kubes, P., Paduch, M., Sadowski, M. J., Cikhardt, J., Cikhardtova, B., Klir, D., Kravarik, J., Munzar, V., Rezac, K., Skladnik-Sadowska, E., et al. 2019 Evolution of a pinch column during the acceleration of fast electrons and deuterons in a plasma-focus discharge. IEEE Trans. Plasma Sci. 47, 339345.CrossRefGoogle Scholar
Lavine, E. S. & You, S. 2019 Helical shear-flow stabilization of an astrophysically relevant laboratory plasma jet. Phys. Rev. Lett. 123, 145002.CrossRefGoogle ScholarPubMed
Lebedev, S. V., Ampleford, D., Ciardi, A., Bland, S. N., Chittenden, J. P., Haines, M. G., Frank, A., Blackman, E. G. & Cunningham, A. 2004 Jet deflection via crosswinds: laboratory astrophysical studies. Astrophys. J. 616, 988997.CrossRefGoogle Scholar
Lebedev, S. V., Frank, A. & Ryutov, D. D. 2019 Exploring astrophysics-relevant magnetohydrodyn-amics with pulsed-power laboratory facilities. Rev. Mod. Phys. 91, 025002.CrossRefGoogle Scholar
Lindl, J. D., Amendt, P., Berger, R. L., Glendinning, S. G., Glenzer, S. H., Haan, S. W., Kauffman, R. L., Landen, O. L. & Suter, L. J. 2004 The physics basis for ignition using indirect-drive targets on the national ignition facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Mather, J. W. 1965 Formation of a high-density deuterium plasma focus. Phys. Fluids 8 (2), 366377.CrossRefGoogle Scholar
Mertens, F., Lobanov, A. P., Walker, R. C. & Hardee, P. E. 2016 Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. Astron. Astrophys. 595, A54.CrossRefGoogle Scholar
Mitrofanov, K. N., Ananyev, S. S., Voitenko, D. A., Krauz, V. I., Astapenko, G. I., Markoliya, A. I. & Myalton, V. V. 2017 b Localization of the magnetic field in a plasma flow in laboratory simulations of astrophysical jets at the KPF-4-PHOENIX installation. Astron. Rep. 61, 775782.CrossRefGoogle Scholar
Mitrofanov, K. N., Krauz, V. I., Grabovski, E. V., Myalton, V. V., Paduch, M. & Gritsuk, A. N. 2018 Features of the application of the magnetic-probe method for diagnostics of high-temperature plasma. Instrum. Exp. Tech. 61, 239259.CrossRefGoogle Scholar
Mitrofanov, K. N., Krauz, V. I., Grabovski, E. V., Myalton, V. V., Vinogradov, V. P., Paduch, M., Scholz, M. & Karpiński, L. 2015 Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities. Plasma Phys. Rep. 41, 379398.CrossRefGoogle Scholar
Mitrofanov, K. N., Krauz, V. I., Myalton, V. V., Velikhov, E. P., Vinogradov, V. P. & Vinogradova, Y. V. 2014 Magnetic field distribution in the plasma flow generated by a plasma focus discharge. J. Expl Theor. Phys. 119, 910923.CrossRefGoogle Scholar
Mitrofanov, K. N., Krauz, V. I., Myalton, V. V., Vinogradov, V. P., Kharrasov, A. M. & Vinogradova, Y. V. 2017 a Properties of the distribution of azimuthal magnetic field in a plasma flow during laboratory simulations of astrophysical jets in a plasma-focus installation. Astron. Rep. 61, 138152.CrossRefGoogle Scholar
Mourenas, D., Vierne, J., Simonet, F., Krauz, V. I., Nikulin, S. A., Myalton, V. V. & Karakin, M. A. 2003 Laboratory and computer simulations of super-Alfvénic shocks in a weakly ionized medium. Phys. Plasmas 10, 605613.CrossRefGoogle Scholar
Pelletier, G. & Pudritz, R. 1992 Hydromagnetic disk winds in young stellar objects and active galactic nuclei. Astrophys. J. 394, 117138.CrossRefGoogle Scholar
Reipurth, B. & Bally, J. 2001 Herbig–Haro flows: probes of early stellar evolution. Annu. Rev. Astron. Astrophys. 39, 403455.CrossRefGoogle Scholar
Remington, B. A., Drake, R. P. & Ryutov, D. D. 2006 Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys. 78, 755807.CrossRefGoogle Scholar
Ryutov, D. D., Derzon, M. S. & Matzen, M. K. 2000 The physics of fast Z pinches. Rev. Mod. Phys. 72, 167223.CrossRefGoogle Scholar
Ryutov, D. D. & Remington, B. A. 2002 Scaling astrophysical phenomena to high-energy-density laboratory experiments. Plasma Phys. Control. Fusion 44, B407B423.CrossRefGoogle Scholar
Scholz, M., Miklaszewski, R., Gribkov, V. A. & Mezzetti, F. 2000 PF-1000 device. Nukleonika 45, 155158.Google Scholar
Skladnik-Sadowska, E., Dan'ko, S. A., Kharrasov, A. M., Krauz, V. I., Kwiatkowski, R., Paduch, M., Sadowski, M. J., Zaloga, D. R. & Zielinska, E. 2018 Influence of gas conditions on parameters of plasma jets generated in the PF-1000U plasma-focus facility. Phys. Plasmas 25, 082715.CrossRefGoogle Scholar
Skladnik-Sadowska, E., Dan'ko, S. A., Kwiatkowski, R., Sadowski, M. J., Zaloga, D. R., Paduch, M., Zielinska, E., Kharrasov, A. M. & Krauz, V. I. 2016 Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000U facility. Phys. Plasmas 23, 122902.CrossRefGoogle Scholar
Vargaftik, N. B. 1975 Handbook of Physical Properties of Liquids and Gases – Pure Substances and Mixtures, 2nd edn. Springer-Verlag.CrossRefGoogle Scholar
Voitenko, D. A., Ananyev, S. S., Astapenko, G. I., Basilaia, A. D., Markolia, A. I., Mitrofanov, K. N., Myalton, V. V., Timoshenko, A. P., Kharrasov, A. M. & Krauz, V. I. 2017 Study of plasma flows generated in plasma focus discharge in different regimes of working gas filling. Plasma Phys. Rep. 43, 11321146.CrossRefGoogle Scholar
Woitas, J., Bacciotti, F., Ray, T. P., Marconi, A., Coffey, D. & Eislöffel, J. 2005 Jet rotation: launching region, angular momentum balance and magnetic properties in the bipolar outflow from RW Aur. Astron. Astrophys. 432, 149160.CrossRefGoogle Scholar