Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T13:41:56.424Z Has data issue: false hasContentIssue false

Propagation of electromagnetic waves in inhomogeneous plasmas

Published online by Cambridge University Press:  13 March 2009

E. Busatti
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7-56127 Pisa, Italy
A. Ciucci
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7-56127 Pisa, Italy
M. De Rosa
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7-56127 Pisa, Italy
V. Palleschi
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7-56127 Pisa, Italy
S. Rastelli
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7-56127 Pisa, Italy
M. Lontano
Affiliation:
Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Via Bassini, 15-20133 Milano, Italy
N. Lunin†
Affiliation:
Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Via Bassini, 15-20133 Milano, Italy

Extract

The reflection and transmission coefficients for an electromagnetic beam propagating in an inhomogeneous plasma are calculated analytically using the Magnus approximation in different physical configurations. The theoretical predictions for such coefficients are expressed in simple analytical form, and are compared with the exact results obtained by numerical solution of the wave propagation equations, using the Berreman 4 × 4 matrix method. It is shown that the theoretical approach is able to reproduce the correct results for reflection and transmission coefficients over a wide range of physical parameters. The accuracy of the theoretical analysis, at different orders of approximation, is also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abèles, F. 1950 Ann. Phys. (Paris) 5, 598.Google Scholar
Abramowitz, M. A. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Berreman, D. W. 1972 J. Opt. Soc. Am. 62, 502.CrossRefGoogle Scholar
Bonnaud, G. 1987 Plasma Phys. Contr. Fusion 29, 573.CrossRefGoogle Scholar
Born, M. & Wolf, E. 1964 Principles of Optics. Pergamon.Google Scholar
Busatti, E., Ciucci, A., De Rosa, M., Rastelli, S. & Palleschi, V. (to be published).Google Scholar
Faetti, S. & Palleschi, V. 1984 Phys. Rev. A 30, 3241.CrossRefGoogle Scholar
Jones, R. C. 1941 J. Opt. Soc. Am. 31, 488.CrossRefGoogle Scholar
Kolkunov, V. A. & Mel'nikov, V. N. 1973 Soviet J. Nucl. Phys. 17, 452.Google Scholar
Lekner, J. 1986 J. Opt. Soc. Am. A 3, 9.CrossRefGoogle Scholar
Lekner, J. 1986 J. Opt. Soc. Am. A 3, 16.CrossRefGoogle Scholar
Lekner, J. 1987 Theorey of Reflection. Martinus Nijhoff.Google Scholar
Litvak, A. 1977 Proceedings of the 13th international Conference on Phenomena in Ionized Gases, Berlin, p. 189.Google Scholar
Lontano, M. & Lunin, N. 1991 J. Plasma Phys. 45, 173.CrossRefGoogle Scholar
Magnus, W. 1954 Commun. Pure Appl. Maths 7, 649.CrossRefGoogle Scholar
Ng, A., Pitt, L., Salzmann, B. & Offenberger, A. A. 1979 Phys. Rev. Lett. 42, 307.CrossRefGoogle Scholar
Pechukas, P. & Light, J. C. 1966 J. Chem. Phys. 44, 3897.CrossRefGoogle Scholar
Rostokin, V. I. & Kolkunov, V. A. 1969 Proceedings of the Moscow Physical Engineering institute on Physics of Gas Discharge Plasma, vol. 2, p. 131.Google Scholar
Schwinger, J. 1947 Phys. Rev. A 72, 742.Google Scholar
Tsytovich, V. N. 1976 Physica C 82, 191.Google Scholar