Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T01:43:58.771Z Has data issue: false hasContentIssue false

Propagation of electromagnetic waves in a density-modulated plasma

Published online by Cambridge University Press:  13 March 2009

Maurizio Lontano
Affiliation:
Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milano, Italy
Nicolai Lunin
Affiliation:
Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milano, Italy

Abstract

The properties of electromagnetic wave propagation in a uniformly densitymodulated plasma are studied, starting from a unidimensional scalar wave (Hill) equation for the wave electric field. Introduction of the formalism of the spatial propagator Q(z2, z1), from the point z1 to the point z2 allows reduction of the problem to determination of the propagator relevant to a single plasma layer that constitutes the entire periodic structure. The transmission coefficient of a single layer can be computed for any kind of density profile by means of the Magnus approximation, satisfying energy flux conservation at each order in the relevant expansion. The appearance of ‘forbidden zones’ in parameter space leads to the possibility that the incident electromagnetic wave can be partially or completely reflected if a sufficient number of periods are present. The explicit computation of the transmission coefficient for a series of n successive layers confirms this effect as the result of a ‘resonant’ interaction of the incident wave and the ‘periodicity’ of the medium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, A. & Stegun, T. A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Bonnaud, G. 1987 Plasma Phys. Contr. Fusion, 29, 573.CrossRefGoogle Scholar
Born, M. & Wolf, E. 1959 Principles of Optics. Pergamon.Google Scholar
Brillouin, L. & Parodi, M. 1956 Propagation des ondes dans les milieux periodiques. Masson.Google Scholar
Figueroa, H. & Joshi, C. 1985 Laser Interaction and Related Plasma Phenomena, vol. 7 (ed. Hora, H. & Miley, G. M.). Plenum.Google Scholar
Jordan, D. W. & Smith, P. 1977 Nonlinear Ordinary Differential Equations. Clarendon.Google Scholar
Kaw, P. K., Lin, A. T. & Dawson, J. M. 1973 Phys. Fluids. 16, 1967.CrossRefGoogle Scholar
Kolkunov, V. A. 1970 a Soviet J. Nucl. Phys., 10, 734.Google Scholar
Kolkunov, V. A. 1970 b Theor. Math. Phys. 2, 169.CrossRefGoogle Scholar
Kolkunov, V. A. 1970 c Theor. Math. Phys. 3, 72Google Scholar
Kolkunov, V. A. & Mel'nikov, V. N. 1973 Soviet J. Nucl. Phys., 17, 452.Google Scholar
Kuo, S. P. & Zhang, Y. S. 1990 Phys. Fluids, B 2, 667.CrossRefGoogle Scholar
Litvak, A. 1977 Proceedings of the 13th International Conference on Phenomena in Ionized Gases, Berlin, Invited Lectures, p. 189.Google Scholar
Magnus, W. 1954 Commun. Pure Appl. Maths, 7, 649.CrossRefGoogle Scholar
Matti Maricq, M. 1986 J. Chem. Phys. 85, 5167.CrossRefGoogle Scholar
Matti Maricq, M. 1987 J. Chem. Phys. 86, 5647.CrossRefGoogle Scholar
Milfeld, K. F. & Wyatt, R. E. 1983 Phys. Rev. A 27, 72.CrossRefGoogle Scholar
Mulser, P. 1988 Proceedings of the International School of Plasma Physics on ‘Inertial Confinement Fusion’, Varenna (ed. Caruso, A. & Sindoni, E.). p. 33. Editriee Compositori.Google Scholar
Ng, A., Pitt, L., Salzmann, D. & Offenberger, A. A. 1979 Phys. Rev. Lett. 42, 307.CrossRefGoogle Scholar
Pechukas, P. & Light, J. C. 1966 J. Chem. Phys. 44, 3897.CrossRefGoogle Scholar
Rostokin, V. I. & Kolkunov, V. A. 1969 Proceedings of Moscow Physical Engineering Institute on Physics of Gas Discharge Plasmas, vol. 2, p. 131.Google Scholar
Salzman, W. R. 1984 J. Chem. Phys. 82, 822.CrossRefGoogle Scholar
Salzman, W. R. 1987 Phys. Rev. A 36, 5074.CrossRefGoogle Scholar
Stamper, J. A., Lehmberg, R. H., Schmitt, A., Herbst, M. J., Young, F. C, Gardner, J. H. & Obenschain, S. P. 1985 Phys. Fluids, 28, 2563.CrossRefGoogle Scholar
Tsytovich, V. N. 1976 Physica, C 82, 141.Google Scholar
Vilenkin, N. Ya. 1968 Special Functions and the Theory of Group Representations. American Mathematical Society.CrossRefGoogle Scholar
Whittaker, E. T. & Watson, G. N. 1952 Course of Modern Analysis. Cambridge University Press.Google Scholar
Yu, C. X., Cao, J. X., Shen, X. M. & Wang, Z. S. 1988 Plasma Phys. Contr. Fusion, 30. 1821.CrossRefGoogle Scholar
Ziman, J. M. 1969 Elements of Advanced Quantum Theory. Cambridge University Press.Google Scholar