Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T07:50:33.621Z Has data issue: false hasContentIssue false

Predictive simulations of operation scenarios for EAST with METIS code

Published online by Cambridge University Press:  24 July 2017

Y. C. Li
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China University of Science and Technology of China, Hefei 230026, China
M. H. Li
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
B. J. Ding*
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
J. F. Artaud
Affiliation:
CEA, IRFM, 13108 St. Paul-lez-Durance, France
Y. Peysson
Affiliation:
CEA, IRFM, 13108 St. Paul-lez-Durance, France
A. Ekedahl
Affiliation:
CEA, IRFM, 13108 St. Paul-lez-Durance, France
M. Wang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
X. J. Wang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
H. D. Xu
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
J. F. Shan
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
F. K. Liu
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
*
Email address for correspondence: [email protected]

Abstract

Upgraded heating and current drive (H/CD) systems have been equipped on the Experimental Advanced Superconducting Tokamak (EAST). With the upgraded H/CD systems, the operation space of EAST is extended, and the ability to achieve higher performance is improved. In this paper, a 0.5 dimension transport code named Minute Embedded Tokamak Integrated Simulator (METIS) is applied to predict the EAST operation space and to assess the current drive capability of the 4.6 GHz lower hybrid current drive system. Predictive simulation of several EAST scenarios, including steady-state high confinement mode (H-mode), advanced regime, high normalized beta and high electron temperature, are also performed with the available H/CD systems. The simulation results provide a guidance for forthcoming advanced EAST experiments.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amicucci, L., Cardinali, A., Castaldo, C., Cesario, R., Galli, A., Panaccione, L., Paoletti, F., Schettini, G., Spigler, R. & Tuccillo, A. 2016 Current drive for stability of thermonuclear plasma reactor. Plasma Phys. Control. Fusion 58, 014042.Google Scholar
Artaud, J. F., Basiuk, V., Imbeaux, F., Schneider, M., Garcia, J., Giruzzi, G., Huynh, P., Aniel, T., Albajar, F., Ane, J. M. et al. 2010 The CRONOS suite of codes for integrated tokamak modelling. Nucl. Fusion 50, 043001.Google Scholar
Asp, E., Weiland, J., Garbet, X., Mantica, P., Parail, V., Suttrop, W. & Contributors, E.-J. 2005 JETTO simulations of $T_{e}/T_{i}$ effects on plasma confinement. Plasma Phys. Control. Fusion 47, 505.Google Scholar
Bonoli, P. T. & Englade, R. C. 1986 Simulation-model for lower hybrid current drive. Phys. Fluids 29, 2937.Google Scholar
Cardinali, A., Castaldo, C., Cesario, R., Santini, F., Amicucci, L., Ceccuzzi, S., Galli, A., Mirizzi, F., Napoli, F. & Panaccione, L. 2017 Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios. Plasma Phys. Control. Fusion 59, 074002.Google Scholar
Cesario, R., Amicucci, L., Cardinali, A., Castaldo, C., Marinucci, M., Panaccione, L., Santini, F., Tudisco, O., Apicella, M. L., Calabro, G. et al. 2010 Current drive at plasma densities required for thermonuclear reactors. Nat. Commun. 55, 1.Google Scholar
Cesario, R., Cardinali, A., Castaldo, C., Paoletti, F. & Mazon, D. 2004 Modeling of a lower-hybrid current drive by including spectral broadening induced by parametric instability in tokamak plasmas. Phys. Rev. Lett. 92, 175002.Google Scholar
Decker, J., Peysson, Y., Artaud, J. F., Nilsson, E., Ekedahl, A., Goniche, M., Hillairet, J. & Mazon, D. 2014 Damping of lower hybrid waves in large spectral gap configurations. Phys. Plasmas 21, 092504.Google Scholar
Ding, B. J., Li, M. H., Li, Y. C., Wang, M., Liu, F. K., Shan, J. F., Li, J. G. & Wan, B. N. 2017 Studies of challenge in lower hybrid current drive capability at high density regime in experimental advanced superconducting tokamak. J. Plasma Phys. 83, 595830105.Google Scholar
Erents, S. K., Stangeby, P. C., Labombard, B., Elder, J. D. & Fundamenski, W. 2000 Simple relations between scrape-off layer parameters of high recycling diverters. Part I: the relation between ‘upstream’ density and temperature. Nucl. Fusion 40, 295.Google Scholar
Eriksson, L. G., Hellsten, T. & Willen, U. 1993 Comparison of time-dependent simulations with experiments in ion-cyclotron heated plasmas. Nucl. Fusion 33, 1037.Google Scholar
Eriksson, L. G. & Porcelli, F. 2001 Dynamics of energetic ion orbits in magnetically confined plasmas. Plasma Phys. Control. Fusion 43, R145.Google Scholar
Fisch, N. J. 1978 Confining a tokamak plasma with rf-driven currents. Phys. Rev. Lett. 41, 873.Google Scholar
Fisch, N. J. 1985 Conductivity of rf-heated plasma. Phys. Fluids 28, 245.Google Scholar
Fisch, N. J. & Boozer, A. H. 1980 Creating an asymmetric plasma resistivity with waves. Phys. Rev. Lett. 45, 720.Google Scholar
Garbet, X., Mantica, P., Angioni, C., Asp, E., Baranov, Y., Bourdelle, C., Budny, R., Crisanti, F., Cordey, G., Garzotti, L. et al. 2004 Physics of transport in tokamaks. Plasma Phys. Control. Fusion 46, B557.Google Scholar
Giruzzi, G. 1987 Impact of electron trapping on rf current drive in tokamaks. Nucl. Fusion 27, 1934.Google Scholar
Giruzzi, G., Artaud, J. F., Joffrin, E., Garcia, J. & Ide, S.2012 Integrated modelling of JT-60SA scenarios with the METIS code. In 39th EPS Conference on Plasma Physics and 16th International Congress on Plasma Physics, Stockholm, Sweden, P5.018.Google Scholar
Giruzzi, G., Barbato, E., Bernabei, S. & Cardinali, A. 1997 Measurement of the hot electrical conductivity in the PBX-M tokamak. Nucl. Fusion 37, 673.Google Scholar
Hu, C. D., Xie, Y. H., Xie, Y. L., Liu, S., Xu, Y. J., Liang, L. Z., Jiang, C. C., Li, J. & Liu, Z. M. 2016 Performance of positive ion based high power ion source of EAST neutral beam injector. Rev. Sci. Instrum. 87, 02B301.Google Scholar
Janev, R. K., Boley, C. D. & Post, D. E. 1989 Penetration of energetic neutral beams into fusion plasmas. Nucl. Fusion 29, 2125.Google Scholar
Kupfer, K. & Moreau, D. 1992 Wave chaos and the dependence of LHCD efficiency on temperature. Nucl. Fusion 32, 1845.Google Scholar
Kupfer, K., Moreau, D. & Litaudon, X. 1993 Statistical-theory of wave-propagation and multipass absorption for current drive in tokamaks. Phys. Fluids B 5, 4391.Google Scholar
Li, J., Guo, H. Y., Wan, B. N., Gong, X. Z., Liang, Y. F., Xu, G. S., Gan, K. F., Hu, J. S., Wang, H. Q., Wang, L. et al. 2013 A long-pulse high-confinement plasma regime in the experimental advanced superconducting tokamak. Nat. Phys. 9, 817.Google Scholar
Liu, C. S. & Tripathi, V. K. 1986 Parametric-instabilities in a magnetized plasma. Phys. Rep. 130, 143.Google Scholar
Liu, F. K., Ding, B. J., Li, J. G., Wan, B. N., Shan, J. F., Wang, M., Liu, L., Zhao, L. M., Li, M. H., Li, Y. C. et al. 2015 First results of LHCD experiments with 4.6 GHz system toward steady-state plasma in EAST. Nucl. Fusion 55, 123022.CrossRefGoogle Scholar
Liu, F. K., Li, J. G., Shan, J. F., Wang, M., Liu, L., Zhao, L. M., Hu, H. C., Feng, J. Q., Yang, Y., Jia, H. et al. 2016 Development of 4.6 GHz lower hybrid current drive system for steady state and high performance plasma in EAST. Fusion Engng Des. 113, 131.Google Scholar
Liu, Z. X., Gao, X., Liu, S. C., Ding, S. Y., Xia, T. Y., Zhang, T., Zhang, S. B., Wang, Y. M., Han, X., Li, J. G. et al. 2013 H-mode power threshold and confinement in a molybdenum wall with different magnetic configurations on the EAST tokamak. Nucl. Fusion 53, 073041.Google Scholar
Mahdavi, M. A., Maingi, R., Groebner, R. J., Leonard, A. W., Osborne, T. H. & Porter, G. 2003 Physics of pedestal density profile formation and its impact on H-mode density limit in burning plasmas. Phys. Plasmas 10, 3984.Google Scholar
Peysson, Y. & Shoucri, M. 1998 An approximate factorization procedure for solving nine-point elliptic difference equations – application for a fast 2-D relativistic Fokker–Planck solver. Comput. Phys. Commun. 109, 55.Google Scholar
Porter, G. D., Davies, S., Labombard, B., Loarte, A., McCormick, K., Monk, R., Shimada, M. & Sugihara, M. 1999 Analysis of separatrix plasma parameters using local and multi-machine databases. J. Nucl. Mater. 266, 917.Google Scholar
Sauter, O., Angioni, C. & Lin-Liu, Y. R. 1999 Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime. Phys. Plasmas 6, 2834.Google Scholar
Snipes, J. A. & Database, I. H.-m. T. 2000 Latest results on the H-mode threshold using the international H-mode threshold database. Plasma Phys. Control. Fusion 42, A299.Google Scholar
Stangeby, P. C. 2000 The Plasma Boundary of Magnetic Fusion Devices. Institute of Physics Publishing.Google Scholar
Stix, T. H. 1975 Fast-wave heating of a 2-component plasma. Nucl. Fusion 15, 737.Google Scholar
Wakatani, M., Mukhovatov, V. S., Burrell, K. H., Connor, J. W., Cordey, J. G., Esipchuk, Y. V., Garbet, X., Lebedev, S. V., Mori, M., Toi, K. et al. 1999 Chapter 2: plasma confinement and transport. Nucl. Fusion 39, 2175.Google Scholar
Waltz, R. E., Staebler, G. M., Dorland, W., Hammett, G. W., Kotschenreuther, M. & Konings, J. A. 1997 A gyro-Landau-fluid transport model. Phys. Plasmas 4, 2482.Google Scholar
Wan, Y. X., Team, H.-. & Team, H.-U. 2000 Overview of steady state operation of HT-7 and present status of the HT-7U project. Nucl. Fusion 40, 1057.CrossRefGoogle Scholar
Wesson, J. 2011a Tokamak, p. 250. Oxford University Press.Google Scholar
Wesson, J. 2011b Tokamak, pp. 290299. Oxford University Press.Google Scholar
Xu, H. D., Wang, X. J., Liu, F. K., Zhang, J., Huang, Y. Y., Shan, J. F., Wu, D. J., Hu, H. C., Li, B., Li, M. H. et al. 2016 Development and preliminary commissioning results of a long pulse 140 GHz ECRH system on EAST tokamak (invited). Plasma Sci. Technol. 18, 442.Google Scholar
Zhao, Y. P., Zhang, X. J., Mao, Y. Z., Yuan, S., Xue, D. Y., Deng, X., Wang, L., Ju, S. Q., Cheng, Y., Qin, C. M. et al. 2014 EAST ion cyclotron resonance heating system for long pulse operation. Fusion Engng Des. 89, 2642.Google Scholar