Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:55:49.398Z Has data issue: false hasContentIssue false

Plasma heating by a relativistic electron beam with secondary instabilities

Published online by Cambridge University Press:  13 March 2009

T. Tajima
Affiliation:
Department of Physics, University of California, Los Angeles

Abstract

Relativistic electron beam heating of a dense plasma through the two-stream instability is studied. A large amplitude beam-plasma wave excited by the instability induces waves of wide wavenumber spectrum at low phase velocities through secondary parametric instability processes. In some cases such a complicated mode coupling of the beam-plasma wave into low phase velocity waves and their saturation may be described in terms of soliton formation. A beam stopping length associated with this process is obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altyntsev, A. T., Eskov, A. G., Zolotovskii, O. A., Koroteev, V. I., Kurtmullaev, R. Kh., Masalov, V. D. & Semenov, V. N. 1971 Soviet Phys. JETP Lett. 13, 139.Google Scholar
Bludman, S. A., Watson, K. M. & Rosenbluth, M. N. 1960 Phys. Fluids, 3, 747.CrossRefGoogle Scholar
Breizman, B. N. 1973 Sixth European Conference on Controlled Fusion and Plasma Physics (Moscow), vol. 1, p. 491.Google Scholar
Dakin, D. R., Tajima, T., Benford, G. & Rynn, N. 1976 J. Plasma Phys. 15, 175.CrossRefGoogle Scholar
Dawson, J. M., Hertzberg, A., Kidder, R. E., Vlases, G. C., Ahlstrom, H. G. & Steinhauer, L. C. 1971 Proceedings of IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research, vol. 1, p. 673.Google Scholar
Ekdahl, C., Greenspan, M., Kribel, R. E., Sethian, J. & Wharton, C. B. 1974 Phys. Rev. Lett. 33, 346.CrossRefGoogle Scholar
Fainberg, YA. B., Shapiro, V. D. & Shevchenko, V. I. 1970 Soviet Phys. JETP, 30, 528.Google Scholar
Fried, B. D. & Gould, R. W. 1961 Phys. Fluids, 4, 139.CrossRefGoogle Scholar
Goldenbaum, G. C., Dove, W. F., Gerber, K. A. & Logan, B. G. 1974 Phys. Rev. Lett. 32, 830.CrossRefGoogle Scholar
Kapetanakos, C. A. & Hammer, D. A. 1973 Appl. Phys. Lett. 23, 17.CrossRefGoogle Scholar
Karpman, V. I. 1971 Plasma Phys. 13, 477.CrossRefGoogle Scholar
Liu, C. S., Rosenbluth, M. N. & White, R. B. 1974 Phys. Fluids, 17, 1211.CrossRefGoogle Scholar
Miller, P. A. & Kuswa, G. W. 1973 Phys. Lett. 30, 958.CrossRefGoogle Scholar
Molvig, K. 1975 Ph.D. Thesis, University of California, Irvine.Google Scholar
Nishikawa, K. 1968 J. Phys. Soc. Japan, 24, 916.CrossRefGoogle Scholar
Nishikawa, K., Hojo, H., Mima, K. & Ikezi, H. 1974 Phys. Rev. Lett. 33, 148.CrossRefGoogle Scholar
Papadopoulos, K. 1975 Phys. Fluids, 18, 1769.CrossRefGoogle Scholar
Rudakov, L. I. 1971 Soviet Phys. JETP, 32, 1134.Google Scholar
Sagdeev, S. Z. 1965 Congress on Applied Mathematics, New York.Google Scholar
Thode, L. E. & Sudan, R. N. 1975 Phys. Fluids, 18, 1552.CrossRefGoogle Scholar
Thompson, J. J. & Karush, J. I. 1974 Phys. Fluids, 17, 1608.CrossRefGoogle Scholar
Valeo, E. L. & Oberman, C. 1973 Phys. Rev. Lett. 30, 1035.CrossRefGoogle Scholar
Young, T. S. T. 1975 Physics International Report, PIFR-557–1.Google Scholar
Zakharov, V. E. 1972 Soviet Phys. JETP, 35, 908.Google Scholar