Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T00:00:16.676Z Has data issue: false hasContentIssue false

Particle position and velocity measurement in dusty plasmas using particle tracking velocimetry

Published online by Cambridge University Press:  31 May 2016

Yan Feng*
Affiliation:
Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
J. Goree
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA
Zach Haralson
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA
Chun-Shang Wong
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA
A. Kananovich
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA
Wei Li
Affiliation:
Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
*
Email address for correspondence: [email protected]

Abstract

Methods of imaging and image analysis are presented for dusty plasma experiments. Micron-sized polymer spheres, electrically suspended in a partially ionized gas, are illuminated by a sheet of laser light and imaged by video cameras. Image analysis methods yield particle positions and velocities of individual particles in each video image. Methods to minimize errors in the particle positions and velocities, which are now commonly used in the dusty plasma community, are described.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 1984 Scattering particle characteristics and their effect on pulsed laser measurements of fluid-flow – speckle velocimetry vs particle image velocimetry. Appl. Opt. 23, 16901961.Google Scholar
Bonitz, M., Henning, C. & Block, D. 2010 Complex plasmas: a laboratory for strong correlations. Rep. Prog. Phys. 73, 066501.CrossRefGoogle Scholar
Feng, Y., Goree, J. & Liu, B. 2007 Accurate measurement of particle positions from images. Rev. Sci. Instrum. 78, 053704.CrossRefGoogle ScholarPubMed
Feng, Y., Goree, J. & Liu, B. 2008 Solid superheating observed in two-dimensional strongly-coupled dusty plasma. Phys. Rev. Lett. 100, 205007.Google Scholar
Feng, Y., Goree, J. & Liu, B. 2010 Viscoelasticity of 2D liquids quantified in a dusty plasma experiment. Phys. Rev. Lett. 105, 025002.CrossRefGoogle Scholar
Feng, Y., Goree, J. & Liu, B. 2011 Errors in particle tracking velocimetry with high-speed cameras. Rev. Sci. Instrum. 82, 053707.CrossRefGoogle ScholarPubMed
Feng, Y., Goree, J. & Liu, B. 2012a Observation of temperature peaks due to strong viscous heating in a dusty plasma flow. Phys. Rev. Lett. 109, 185002.Google Scholar
Feng, Y., Goree, J. & Liu, B. 2012b Energy transport in a shear flow of particles in a two-dimensional dusty plasma. Phys. Rev. E 86, 056403.Google Scholar
Fink, M. A., Thoma, M. H. & Morfill, G. E. 2011 PK-4 science activities in micro-gravity. Microgravity Sci. Technol. 23, 169171.CrossRefGoogle Scholar
Flanagan, T. M. & Goree, J. 2009 Gas flow driven by thermal creep in dusty plasma. Phys. Rev. E 80, 046402.Google ScholarPubMed
Himple, M., Bockwoldt, T., Killer, C., Menzel, K. O., Piel, A. & Melzer, A. 2014 Stereoscopy of dust density waves under microgravity: vlocity distributions and phase-resolved single-particle analysis. Phys. Plasmas 21, 033703.Google Scholar
Himple, M., Killer, C., Buttenschön, B. & Melzer, A. 2012 Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles. Phys. Plasmas 19, 123704.Google Scholar
Ivanov, Y. & Melzer, A. 2007 Particle positioning techniques for dusty plasma experiments. Rev. Sci. Instrum. 78, 033506.Google Scholar
Juan, W.-T. & I, L. 1998 Anomalous diffusion in strongly coupled quasi-2D dusty plasmas. Phys. Rev. Lett. 80, 30733076.Google Scholar
Knapek, C. A., Samsonov, D., Zhdanov, S., Konopka, U. & Morfill, G. E. 2007 Recrystallization of a 2D plasma crystal. Phys. Rev. Lett. 98, 015004.Google Scholar
Liu, B., Avinash, K. & Goree, J. 2003 Transverse optical mode in a one-dimensional chain. Phys. Rev. Lett. 91, 255003.Google Scholar
Liu, B., Goree, J., Fortov, V. E., Lipaev, A. M., Molotkov, V. I., Petrov, O. F., Morfill, G. E., Thomas, H. M., Rothermel, H. & Ivlev, A. V. 2009 Transverse oscillations in a single-layer dusty plasma under microgravity. Phys. Plasmas 16, 083703.Google Scholar
Liu, B., Goree, J., Nosenko, V. & Boufendi, L. 2003 Radiation pressure and gas drag forces on a Melamine–Formaldehyde microsphere in a dusty plasma. Phys. Plasmas 10, 9.Google Scholar
Liu, B., Goree, J. & Suranga Ruhunusiri, W. D. 2015 Characterization of three-dimensional structure using images. Rev. Sci. Instrum. 86, 033703.Google Scholar
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87118.CrossRefGoogle Scholar
Melzer, A. & Goree, J. 2008 Fundamentals of dusty plasmas. In Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd edn (ed. Hippler, R., Kersten, H., Schmidt, M. & Schoenbach, K. H.), pp. 157206. Wiley-VCH.Google Scholar
Morfill, G. E. & Ivlev, A. V. 2009 Complex plasmas: an interdisciplinary field. Rev. Mod. Phys. 81, 13531404.Google Scholar
Nosenko, V. & Goree, J. 2004 Shear flows and shear viscosity in a two-dimensional Yukawa system (dusty plasma). Phys. Rev. Lett. 93, 155004.CrossRefGoogle Scholar
Nosenko, V., Goree, J. & Piel, A. 2006 Laser method of heating monolayer dusty plasmas. Phys. Plasmas 13, 032106.Google Scholar
Nunomura, S., Zhdanov, S., Samsonov, D. & Morfill, G. 2005 Wave spectra in solid and liquid complex (dusty) plasmas. Phys. Rev. Lett. 94, 045001.CrossRefGoogle ScholarPubMed
Piel, A. 2010 Plasma Physics. Springer.Google Scholar
Pieper, J. B., Goree, J. & Quinn, R. A. 1996 Experimental studies of 2D and 3D structure in a crystallized dusty plasma. J. Vac. Sci. Technol. A 14, 519524.Google Scholar
Raffel, M., Willert, C. E. & Wereley, S. 1998 Particle Image Velocimetry: A Practical Guide. Springer.CrossRefGoogle Scholar
Rasband, W. S.2016 IMAGEJ, Version 1.49, US National Institutes of Health, Bethesda, MD (http://rsb.info.nih.gov/ij/).Google Scholar
Schella, A., Miksch, T., Melzer, A., Schablinski, J., Block, D., Piel, A., Thomsen, H., Ludwig, P. & Bonitz, M. 2011 Melting scenarios for three-dimensional dusty plasma clusters. Phys. Rev. E 84, 056402.Google Scholar
Selwyn, G. S., Singh, J. & Bennett, R. S. 1989 In situ laser diagnostic studies of plasma-generated particulate contamination. J. Vac. Sci. Technol. A 7, 27582765.Google Scholar
Shukla, P. K. & Mamun, A. A. 2001 Introduction to Dusty Plasma Physics, Institute of Physics.Google Scholar
Teng, L.-W., Chang, M.-C., Tseng, Y.-P. & I, L. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103, 245005.Google Scholar
Thomas, E. Jr., Williams, J. D. & Sliver, J. 2004 Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma. Phys. Plasmas 11, L37.Google Scholar
Williams, J. D., Thomas, E. Jr., Couëdel, L., Ivlev, A. V., Zhdanov, S. K., Nosenko, V., Thomas, H. M. & Morfill, G. E. 2012 Kinetics of the melting front in two-dimensional plasma crystals: complementary analysis with the particle image and particle tracking velocimetries. Phys. Rev. E 86, 046401.Google ScholarPubMed