Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T13:25:40.031Z Has data issue: false hasContentIssue false

Parametric excitation in an inhomogeneous plasma

Published online by Cambridge University Press:  13 March 2009

C. S. Chen
Affiliation:
Department of Applied Physics and Information Science, University of California at San Diego, La Jolla, California 92037, U.S.A.

Abstract

An infinite, inhomogeneous electron plasma driven by a spatially uniform oscillating electric field is investigated. The multi-time perturbation method is used to analyze possible parametric excitations of transverse waves and to evaluate their growth rates. It is shown that there exist subharmonic excitations of: (1) a pair of transverse waves in an unmagnetized plasma and (2) a pair of one right and one left circularly polarized wave in a magnetoplasma. Additionally, parametric excitation of two right or two left circularly polarized waves with different frequencies can exist in a magnetoplasma. The subharmonic excitations are impossible whenever the density gradient and the applied electric field are perpendicular. However, parametric excitation is possible with all configurations.

Type
Articles
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M. & Silin, V. P. 1965 Zh. Eksperim. i Teor. Fiz. 48, 901 [English transl.; Soviet Phys. JETP 21, 601 (1965)].Google Scholar
Aliev, Yu. M., Silin, V. P. & Watson, C. 1966 Zh. Eksperim. i Teor. Fiz. 50, 943 [English transl.: Soviet Phys. JETP 23, 626 (1966)].Google Scholar
Amano, T. & Okamoto, M. 1969 J. Phys. Soc. Japan 26, 529.CrossRefGoogle Scholar
Chen, C. S. & Lewak, G. J. 1970 J. Plasma Phys. 4, 357.CrossRefGoogle Scholar
DuBois, D. F. 1968 In Statistical Physics of Charged Particle Systems, edited by Kubo, R. and Kihara, T. (New York: W. A. Benjamin, Inc., 1969), and references therein.Google Scholar
Frieman, E. A. 1963 J. Math. Phys. 4, 410.CrossRefGoogle Scholar
Gorbunov, L. M. & Silin, V. P. 1969 Zh. Tek. Fiz. 39, 3 [English transl.: Soviet Phys. Tech. Phys. 14, 1 (1969)].Google Scholar
Montgomery, D. & Alexeff, I. 1966 Phys. Fluids 9, 1362.CrossRefGoogle Scholar
Prasad, R. 1968 Phys. Fluids 11, 1768.CrossRefGoogle Scholar
Ramazashvili, R. R. 1968 Zh. Eksperim. i Teor. Fiz. 53, 2168 [English transl.: Soviet Phys. JETP 26, 1255 (1968)].Google Scholar
Rebhan, E. 1969 Phys. Fluids 12, 192.CrossRefGoogle Scholar
Sandri, G. 1963 Ann. Phys., N.Y. 24, 332.CrossRefGoogle Scholar
Silin, V. P. 1965 Zh. Eksperim. i Teor. Fiz. 48, 1679 [English transl.: Soviet Phys. JETP 21, 1127 (1965)].Google Scholar
Takeo, A. 1967 J. Phys. Soc. Japan 22, 1282.CrossRefGoogle Scholar