Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T14:01:39.706Z Has data issue: false hasContentIssue false

Parametric decay of extraordinary electromagnetic waves into two upper hybrid plasmons

Published online by Cambridge University Press:  13 March 2009

Celso Grebogi
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742
C. S. Liu
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

Abstract

The effects of a self-generated magnetic field in a laser produced plasma on the parametric decay of an extraordinary electromagnetic wave into two upper hybrid plasmons is examined for arbitrary magnetic field intensity and arbitrary ratio k/k0. Owing to the presence of magnetic field, the linear Landau damping is greatly reduced and the spectrum of unstable modes is significantly modified for kλD≳ 0·2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bezzerides, B., DuBois, D. F., Forslung, D. W. & Lindman, E. L. 1977 Phys. Rev. Lett. 38, 495.Google Scholar
Colombant, D. G. & Winsor, N. K. 1977 Phys. Rev. Lett. 38, 697.Google Scholar
DiVergilio, W. F., Wong, A. Y., Kim, H. C. & Lee, Y. C. 1977 Phys. Rev. Lett. 38, 541.CrossRefGoogle Scholar
Estabrook, K. 1978 Phys. Rev. Lett. 41, 1808.Google Scholar
Goldman, M. V. 1966 Ann. Phys. 38, 117.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics — A Statistical Approach, p. 73. Benjamin.Google Scholar
Jackel, S., Albrition, J. & Goldman, E. 1975 Phys. Rev. Lett. 35, 514.Google Scholar
Jackel, S., Perry, B. & Lubin, M. 1976 Phys. Rev. Lett. 37, 95.CrossRefGoogle Scholar
Jackson, E. A. 1967 Phys. Rev. 153, 235.Google Scholar
Lee, Y. C. & Kaw, P. K. 1974 Phys. Rev. Lett. 32, 135.CrossRefGoogle Scholar
Liu, C. S. & Rosenbluth, M. N. 1976 Phys. FlUsds, 19, 967.Google Scholar
Rosenbluth, M. N. 1972 Phys. Rev. Lett. 29, 565.CrossRefGoogle Scholar
Schuss, J. J. 1977 Phys. Fluids, 20, 1120.Google Scholar
Schuss, J. J., Chu, T. K. & Johnson, L. C. 1978 Phys. Rev. Lett. 40, 27.Google Scholar
Stamper, J. A. 1978 Bull. Am. Phys. Soc. 23, 814.Google Scholar
Stamper, J. A., McLean, E. A. & Ripin, B. H. 1978 Phys. Rev. Lett. 40, 1177.Google Scholar
Stamper, J. A., Papadopoulos, K., Dean, S. O., McLean, E. A. & Dawson, J. M. 1972 Phys. Rev. Lett. 26, 1012.Google Scholar
Stamper, J. A. & Ripin, B. H. 1975 Phys. Rev. Lett. 34, 138.Google Scholar
Stamper, J. A. & Tidman, D. A. 1973 Phys. Fluids, 16, 2024.Google Scholar
Thomson, J. J., Max, C. E. & Estabrook, K. 1975 Phys. Rev. Lett. 35, 663.Google Scholar
Tidman, D. A. & Shanny, R. A. 1974 Phys. Fluids, 17, 1207.Google Scholar
Woo, W. & DeGroot, J. S. 1978 a Phys. Fluids, 21, 124.CrossRefGoogle Scholar
Woo, W. & DeGroot, J. S. 1978 b Phys. Fluids, 21, 2073.Google Scholar