Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T00:40:34.032Z Has data issue: false hasContentIssue false

Parallel electric fields: variations in space and time on auroral field lines

Published online by Cambridge University Press:  01 February 2008

J. VEDIN
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden ([email protected])
K. RÖNNMARK
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden ([email protected])

Abstract

We present results from a particle–fluid simulation of auroral electrons and discuss the distribution of parallel electric fields along auroral field lines and the processes occurring during the build up of these electric fields. Neglecting field-aligned ion dynamics, the main potential drop has a width of about 5000, km and is centered at an altitude of roughly 5000, km. We find that the gradient in the potential becomes steeper and the build up of the potential drop becomes faster if the temperature of the magnetospheric electrons is lower.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bingham, R., Bryant, D. A. and Hall, D. S. 1984 A wave model for the aurora. Geophys. Res. Lett. 11, 327.CrossRefGoogle Scholar
Bingham, R., Cairns, R. A., Dendy, R. O., Shapiro, V. D., Shukla, P. K. and Stenflo, L. 2001 Auroral particle acceleration by waves. Phys. Chem. Earth 26, 133.Google Scholar
Borovsky, J. E. 1993 Auroral arc thickness as predicted by various theories. J. Geophys. Res. 98, 6101.CrossRefGoogle Scholar
Burch, J. L., Reiff, P. H. and Sugiura, M. 1983 Upward electron beams measured by DE-1: a primary source of dayside region-1 Birkeland currents. Geophys. Res. Lett. 10, 753.CrossRefGoogle Scholar
Chiu, Y. T. and Schulz, M. 1978 Self-consistent particle and parallel electrostatic field distribution in the magnetospheric-ionospheric auroral region. J. Geophys. Res. 83, 629.CrossRefGoogle Scholar
Croley, D. R. Jr., Mizera, P. F. and Fennell, J. F. 1978 Signature of a parallel electric field in ion and electron distributions in velocity space. J. Geophys. Res. 83, 2701.CrossRefGoogle Scholar
Delory, G. T., Ergun, R. E., Carlson, C. W., Muschietti, L., Chaston, C. C., Peria, W., McFadden, J. P. and Strangeway, R. 1998 FAST observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 2069.Google Scholar
Goertz, C. K. and Boswell, R. W. 1979 Magnetosphere-ionosphere coupling. J. Geophys. Res. 84, 7239.CrossRefGoogle Scholar
Gurgiolo, C. and Burch, J. L. 1988 Simulation of electron distributions within auroral electron regions. J. Geophys. Res. 93, 3989.CrossRefGoogle Scholar
Janhunen, P. 1999 On the current-voltage relationship in fluid theory. Ann. Geophys. 17, 11.CrossRefGoogle Scholar
Jasperse, J. R. and Grossbard, N. J. 2000 The Alfvén–Fälthammar formula for the parallel E-field and its analogue in downward auroral-aurrent regions. IEEE Trans. Plasma Sci. 28, 1874.CrossRefGoogle Scholar
Johansson, T., Figueiredo, S., Karlsson, T., Marklund, G., Fazakerley, A., Buchert, S., Lindqvist, P.-A. and Nilsson, H. 2004 Intense high-altitude auroral electric fields–temporal and spatial characteristics. Ann. Geophys. 22, 2485.CrossRefGoogle Scholar
Klumpar, D. M. and Heikkila, W. J. 1982 Electrons in the ionosphere source cone: evidence for runaway electrons as carriers of downward Birkeland currents. Geophys. Res. Lett. 9, 873.Google Scholar
Knight, S. 1973 Parallel electric fields. Planet. Space Sci. 21, 741.CrossRefGoogle Scholar
Louarn, P., Roux, A., deFéraudy, H. Féraudy, H., LeQuéau, D. Quéau, D., André, M. and Matson, L. 1990 Trapped electrons as a free energy source for the auroral kilometric radiation. J. Geophys. Res. 95, 5983.CrossRefGoogle Scholar
Lysak, R. L. and Dum, C. 1983 Dynamics of magnetosphere-ionosphere coupling including turbulent transport. J. Geophys. Res. 88, 365.CrossRefGoogle Scholar
Marklund, G. T. and Karlsson, T. 2001 Characteristics of the auroral particle acceleration in the upward and downward current regions. Phys. Chem. Earth 26, 81.Google Scholar
Mozer, F. S., Cattell, C. A., Hudson, M. K., Lysak, R. L., Temerin, M. and Torbert, R. B. 1980 Satellite measurements and theories of low altitude auroral particle acceleration. Space Sci. Rev. 27, 155.CrossRefGoogle Scholar
Omidi, N., Wu, C. S. and Gurnett, D. A. 1984 Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism. J. Geophys. Res. 89, 883.CrossRefGoogle Scholar
Paschmann, G., Haaland, S. and Treumann, R. 2002 Auroral plasma physics. Space Sci. Rev. 103, 322.Google Scholar
Persson, H. 1966 Electric field parallel to the magnetic field in a low-density plasma. Phys. Fluids 9, 1090.CrossRefGoogle Scholar
Ramos, J. J. 2003 Dynamic evolution of the heat fluxes in a collisionless magnetized plasma. Phys. Plasmas 10, 3601.CrossRefGoogle Scholar
Rönnmark, K. and Hamrin, M. 2000 Auroral electron acceleration by Alfvén waves and electrostatic fields. J. Geophys. Res. 105, 25333.CrossRefGoogle Scholar
Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Vortex streets driven by sheared flow and applications to black aurora. Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
Shukla, P. K., Stenflo, L., Bingham, R. and Dendy, R. O. 1996 Pondermotive force acceleration of ions in the auroral region. J. Geophys. Res. 101, 27449.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 1998 Interpretations of new features of time domain electric-field structures in the auroral acceleration region. Ann. Geophys. 16, 889.CrossRefGoogle Scholar
Stern, D. P. 1981 One-dimensional models of quasi-neutral parallel electric fields. J. Geophys. Res. 86, 5839.CrossRefGoogle Scholar
Strangeway, R. J., Ergun, R. E., Carlson, C. W., McFadden, J. P., Delory, G. T. and Pritchett, P. L. 2001 Accelerated electrons as the source of auroral kilometric radiation. Phys. Chem. Earth 26, 145.Google Scholar
Streltsov, A. V. and Lotko, W. 2003 Reflection and absorption of Alfvénic power in the low-altitude magnetosphere. J. Geophys. Res. 108, 8016.CrossRefGoogle Scholar
Streltsov, A. V., Lotko, W., Johnson, J. R. and Cheng, C. Z. 1998 Small-scale, dispersive field line resonances in the hot magnetospheric plasma. J. Geophys. Res. 103, 26559.CrossRefGoogle Scholar
Vedin, J. and Rönnmark, K. 2004 A linear auroral current–voltage relation in fluid theory. Ann. Geophys. 22, 1719.CrossRefGoogle Scholar
Vedin, J. and Rönnmark, K. 2005 Electron pressure effects on driven auroral Alfvén waves. J. Geophys. Res. 110, A01214.CrossRefGoogle Scholar
Vedin, J. and Rönnmark, K. 2006 Particle-fluid simulation of the auroral current circuit. J. Geophys. Res. 111, A12201.CrossRefGoogle Scholar
Vedin, J. and Rönnmark, K. 2007a Estimating auroral double layer properties from electron velocity distributions. Geophys. Res. Lett. (submitted).Google Scholar
Vedin, J. and Rönnmark, K. 2007b Implementing a particle–fluid model of auroral electrons. Lecture notes in Computer Science (in press).Google Scholar
Whipple, E. C. Jr. 1977 The signature of parallel electric fields in a collisionless plasma. J. Geophys. Res. 82, 1525.CrossRefGoogle Scholar