Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T14:41:26.722Z Has data issue: false hasContentIssue false

Outline of a theory of lower-hybrid wave absorption

Published online by Cambridge University Press:  13 March 2009

E. Canobbio
Affiliation:
Commission of the European Communities, Brussels, Belgium
R. Croci
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-8046 Garching, Germany

Extract

This paper outlines a theory of absorption of lower-hybrid (LH) waves in an electron plasma that is based on the nonlinear relation between grad │E32, where E3 is the electric field component parallel to the external homogeneous magnetic field, and the space dependent quasi-linear diffusion coefficient, and consequently between grad │E32 and the absorption. A local absorption induces an increase of the value of the gradient in the neighbouring region and thereby extends the absorption domain. In this way virtually total ‘single-path’ absorption of the injected LH power is obtained. The theory also allows an explanation of the density limit in current drive.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonoli, P. & Englade, R. 1986 Phys. Fluids 29, 2937.CrossRefGoogle Scholar
Canobbio, E. & Croci, R. 1987 Z. Naturforsch. 42a, 1067.CrossRefGoogle Scholar
Canobbio, E. & Croci, R. 1991 J. Plasma Phys. 40, 347.CrossRefGoogle Scholar
Devoto, R. S., Blackfield, D. T., Fenstermacher, M. E., Bonoli, P. T., Porkolab, M. & Tinios, G. 1992 Nucl. Fusion 32, 773.CrossRefGoogle Scholar
Karney, C. F. F. 1981 Phys. Fluids 24, 127.CrossRefGoogle Scholar
Kennell, C. F. & Engelmann, F. 1966 Phys. Fluids 9, 2377.CrossRefGoogle Scholar
Morales, G. J. & Lee, Y. C. 1974 Phys. Rev. Lett. 33, 1016.CrossRefGoogle Scholar