Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T14:19:43.005Z Has data issue: false hasContentIssue false

On supersonic plasma flow around an obstacle

Published online by Cambridge University Press:  26 November 2012

J. E. ALLEN*
Affiliation:
University College, Oxford OX1 4BH, UK, Mathematical Institute, Oxford OX1 3LB, UK, Blackett Laboratory, Imperial College, London SW7 2AZ, UK ([email protected])

Abstract

Supersonic plasma flow around an object large compared with the Debye distance is treated using an isothermal gas dynamics model. The case of (initially) subsonic flow has been studied previously using this model, the motivation then being the use of Langmuir probes. In supersonic plasma flow Mach cones describing weak discontinuities rather than shock waves are predicted. A comparison has been made with particle-in-cell simulations carried out by Willis et al. (Willis, C. T. N., Allen, J. E., Coppins, M. and Bacharis, M. 2011 Phys. Rev. E, 84, 046410), where such Mach cones are observed. Other features cannot be explained by the isothermal gas dynamics model, these include the appearance, at high supersonic velocities, of an ion-free region downstream.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. E. 1976 J. Phys. D: Appl. Phys. 9, 2331.CrossRefGoogle Scholar
Allen, J. E. 2009 Plasma Sources Sci. Technol. 18, 014004.CrossRefGoogle Scholar
Allen, J. E. and Andrews, J. G. 1970 J. Plasma Phys. 4, 187.CrossRefGoogle Scholar
Bohm, D. 1949 The Characteristics of Electrical Discharges in Magnetic Fields (ed. Guthrie, A. and Wakerling, R. K.). New York: McGraw-Hill, ch. 3.Google Scholar
Clemmow, P. C. and Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Boston, MA: Addison-Wesley, 272 pp.Google Scholar
Harrison, E. R. and Thompson, W. B. 1959 Proc. Phys. Soc. 7, 145.CrossRefGoogle Scholar
Hutchinson, I. H. 2002 Plasma Phys. Control. Fusion 44, 1953.CrossRefGoogle Scholar
Hutchinson, I. H. 2003 Plasma Phys. Control. Fusion 45, 1477.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1953 Fluid Mechanics. London: Pergamon Press, 344 pp.Google Scholar
Merlino, R. L. and D'Angelo, N. 1987 J. Plasma Phys. 37, 185.CrossRefGoogle Scholar
Miloch, W. J. 2010 Plasma Phys. Control. Fusion 52, 124004.CrossRefGoogle Scholar
Shu, F. H. 1992 Gas Dynamics, Vol. II (Mill Valley, CA: University Science Books, 195 pp.Google Scholar
Stangeby, P. C. and Allen, J. E. 1970 J. Phys. A: Gen. Phys. 3, 304.CrossRefGoogle Scholar
Stangeby, P. C. and Allen, J. E. 1971 J. Plasma Phys. 6, 19.CrossRefGoogle Scholar
Thomas, D. M., Willis, C. T. N., Allen, J. E. and Coppins, M. 2012 Proc. XXI ESCAMPIG, Europhys. Conf. Abstr. 36A, P1.4.10.Google Scholar
Willis, C. T. N., Allen, J. E., Coppins, M. and Bacharis, M. 2011 Phys. Rev. E 84, 046410.Google Scholar