Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T14:37:33.023Z Has data issue: false hasContentIssue false

On nonlinear self-interaction of geodesic acoustic mode driven by energetic particles

Published online by Cambridge University Press:  22 October 2010

G. Y. FU*
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, NJ 08543USA ([email protected])

Abstract

It is shown that nonlinear self-interaction of energetic particle-driven geodesic acoustic mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second-order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second-order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Nazikian, R. et al. 2008 Phys. Rev. Lett. 101, 185001.CrossRefGoogle Scholar
[2]Winsor, N. et al. 1968 Phys. Fluids 11, 2448.CrossRefGoogle Scholar
[3]Fu, G. Y. et al. 2008 Phys. Rev. Lett. 101, 185002.CrossRefGoogle Scholar
[4]Boswell, C. J. et al. 2006 Phys. Lett. A 358, 154158.CrossRefGoogle Scholar
[5]Berk, H. L. et al. 2006 Nucl. Fusion 46, S888S897.CrossRefGoogle Scholar
[6]Nazikian, R. 2009 private communication.Google Scholar
[7]Diamond, P. H. et al. 2005 Plasma Phys. Control. Fusion 47, R35.CrossRefGoogle Scholar
[8]Levedev, V. B. et al. 1996 Phys. Plasmas 3, 3023.CrossRefGoogle Scholar
[9]Novakovskii, S. V. et al. 1997 Phys. Plasmas 4, 4272.CrossRefGoogle Scholar
[10]Sugama, H. and Watanabe, T. H. 2006 J. Plasma Phys. 72, 825.CrossRefGoogle Scholar
[11]Watari, T. et al. 2007 Phys. Plasmas 14, 112512.CrossRefGoogle Scholar
[12]Gao, Z. et al. 2008 Phys. Plasmas 15, 072511.CrossRefGoogle Scholar
[13]Zonca, F. and Chen, L. 2008 Europhys. Lett. 83, 35001.CrossRefGoogle Scholar
[14]Xu, X. Q. et al. 2008 Phys. Rev. Lett. 100, 215001.CrossRefGoogle Scholar
[15]Sasaki, M. et al. 2008 Contrib. Plasma Phys. 48, 68.CrossRefGoogle Scholar
[16]Qiu, Z. Y., Chen, L. and Zonca, F. 2009 Plasma Control. Fusion 51, 012001.CrossRefGoogle Scholar
[17]Itoh, K., Hallatschek, K. and Itoh, S. I. 2005 Plasma Phys. Control. Fusion 47, 451.CrossRefGoogle Scholar
[18]Miki, K. et al. 2007 Phys. Rev. Lett. 99, 145003.CrossRefGoogle Scholar
[19]Chakrabarti, N. et al. 2007 Phys. Plasmas 14, 052308.CrossRefGoogle Scholar
[20]McKeeG, G. R. et al. 2003 Phys. Plasmas 10, 1712.CrossRefGoogle Scholar
[21]Conway, G. D. et al. 2006 In: Proc. 21st Int. Conf. on Fusion Energy 2006. Chengdu, China (Vienna: IAEA) CD-ROM file EX/2-1 and http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm.Google Scholar
[22]Fujisawa, A. et al. 2007 Nucl. Fusion 47, S718?26.CrossRefGoogle Scholar
[23]Sasaki, M. et al. 2009 Phys. Plasmas 16, 022306.CrossRefGoogle Scholar
[24]Sasaki, M. et al. 2009 Plasma Phys. Control. Fusion 51, 085002.CrossRefGoogle Scholar
[25]Zhang, H. S., Qiu, Z., Chen, L. and Lin, Z. 2009 Nucl. Fusion 49, 125009.CrossRefGoogle Scholar
[26]Berk, H. L. and Breizman, B. N. 1990 Phys. Fluids B 2, 2226.CrossRefGoogle Scholar
[27]Breizman, B. N., Berk, H. L., Pekker, M. S. et al. 1997 Phys. Plasmas 4, 1559.CrossRefGoogle Scholar