Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T18:57:46.864Z Has data issue: false hasContentIssue false

On Alfvén wave propagation along a circle on dipolar coordinates

Published online by Cambridge University Press:  03 December 2019

L. M. B. C. Campos
Affiliation:
LAETA, IDMEC, CCTAE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001Lisbon, Portugal
M. J. S. Silva*
Affiliation:
LAETA, IDMEC, CCTAE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001Lisbon, Portugal
F. Moleiro
Affiliation:
LAETA, IDMEC, CCTAE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001Lisbon, Portugal
*
Email address for correspondence: [email protected]

Abstract

The multipolar representation of the magnetic field has, for the lowest-order term, a magnetic dipole that dominates the far field. Thus the far-field representation of the magnetic field of the Earth, Sun and other celestial bodies is a dipole. Since these bodies consist of or are surrounded by plasma, which can support Alfvén waves, their propagation along dipole magnetic field lines is considered using a new coordinate system: dipolar coordinates. The present paper introduces multipolar coordinates, which are an example of conformal coordinates; conformal coordinates are orthogonal with equal scale factors, and can be extended from the plane to space, for instance as cylindrical or spherical dipolar coordinates. The application considered is to Alfvén waves propagating along a circle, that is a magnetic field line of a dipole, with transverse velocity and magnetic field perturbations; the various forms of the wave equation are linear second-order differential equations, with variable coefficients, specified by a background magnetic field, which is force free. The absence of a background magnetic force leads to a mean state of hydrostatic equilibrium, specified by the balance of gravity against the pressure gradient, for a perfect gas or incompressible liquid. The wave equation is simplified to a Gaussian hypergeometric type in the case of zero frequency, otherwise, for non-zero frequency, an extended Gaussian hypergeometric equation is obtained. The solution of the latter specifies the magnetic field perturbation spectrum, and also, via a polarisation relation, the velocity perturbation spectrum; both are plotted, over half a circle, for three values of the dimensionless frequency.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
Alfvén, H. 1942 On the existence of electromagnetic-hydrodynamic waves. Ark. Mat. Astron. Fys. 29B, 17.Google Scholar
Alfvén, H. 1947 Granulation, magneto-hydrodynamic waves, and the heating of the solar corona. Mon. Not. R. Astron. Soc. 107 (2), 211219.Google Scholar
Alfvén, H. 1950 Cosmical Electrodynamics. Clarendon Press–Oxford University Press.Google Scholar
Alfvén, H. & Fälthammar, C.-G. 1963 Cosmical Electrodynamics: Fundamental Principles, 2nd edn. Clarendon Press–Oxford University Press.Google Scholar
Baños, A. Jr. 1955 Magneto-Hydrodynamic waves in incompressible and compressible fluids. Proc. R. Soc. Lond. A 233 (1194), 350366.Google Scholar
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J. et al. 2001 The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19 (10/12), 12071217.Google Scholar
Belyaev, P. P., Polyakov, S. V., Rapoport, V. O. & Trakhtengerts, V. Y. 1990 The ionospheric Alfvén resonator. J. Atmos. Terr. Phys. 52 (9), 781788.Google Scholar
Berezhko, E. G. & Taneev, S. N. 2007 Ion acceleration and Alfvén wave generation at the Earth’s bow shock. Astron. Lett. 33 (5), 346353.Google Scholar
Bromwich, T. J. I’A. 1926 An Introduction to the Theory of Infinite Series, 2nd edn. Macmillan and Company Limited.Google Scholar
Bruno, R. & Carbone, V. 2005 The solar wind as a turbulence laboratory. Liv. Rev. Solar Phys. 2 (1), 4. doi:10.12942/lrsp-2005-4.Google Scholar
Cabannes, H. 1970 Theoretical Magnetofluid Dynamics, Applied Mathematics and Mechanics, vol. 13. Academic Press.Google Scholar
Campos, L. M. B. C. 1977 On the generation and radiation of magneto-acoustic waves. J. Fluid Mech. 81 (3), 529549.Google Scholar
Campos, L. M. B. C. 1983a On magnetoacoustic-gravity waves propagating or standing vertically in an atmosphere. J. Phys. A: Math. Gen. 16 (2), 417437.Google Scholar
Campos, L. M. B. C. 1983b On viscous and resistive dissipation of hydrodynamic and hydromagnetic waves in atmospheres. J. Méc. Théor. Appl. 2 (6), 861891.Google Scholar
Campos, L. M. B. C. 1983c On waves in non-isothermal, compressible, ionized and viscous atmospheres. Solar Phys. 82 (1-2), 355368.Google Scholar
Campos, L. M. B. C. 1987 On waves in gases. Part II. Interaction of sound with magnetic and internal modes. Rev. Mod. Phys. 59 (2), 363463.Google Scholar
Campos, L. M. B. C. 1988a Funções Complexas e Campos Potenciais. Fundação Calouste Gulbenkian.Google Scholar
Campos, L. M. B. C. 1988b On oblique Alfvén waves in a viscous and resistive atmosphere. J. Phys. A: Math. Gen. 21 (13), 29112930.Google Scholar
Campos, L. M. B. C. 1989 On the dissipation of atmospheric Alfvén waves in uniform and non-uniform magnetic fields. Geophys. Astrophys. Fluid Dyn. 48 (4), 193215.Google Scholar
Campos, L. M. B. C. 1992 On the Hall effect on vertical Alfvén waves in an isothermal atmosphere. Phys. Fluids B: Plasma Phys. 4 (9), 29752982.Google Scholar
Campos, L. M. B. C. 1993a Comparison of exact solutions and the phase mixing approximation for dissipative Alfvén waves. Eur. J. Mech. (B/Fluids) 12 (2), 187216.Google Scholar
Campos, L. M. B. C. 1993b Exact and approximate methods for Alfvén waves in dissipative atmospheres. Wave Motion 17 (2), 101112.Google Scholar
Campos, L. M. B. C. 1994 An exact solution for spherical Alfvén waves. Eur. J. Mech. (B/Fluids) 13 (5), 613628.Google Scholar
Campos, L. M. B. C. 1997 Alfvén waves. In Encyclopaedia of Mathematics, pp. 4042. Kluwer Academic.Google Scholar
Campos, L. M. B. C. 1998 On hydromagnetic waves in atmospheres with application to the Sun. Theor. Comput. Fluid Dyn. 10 (1-4), 3770.Google Scholar
Campos, L. M. B. C. 1999 On the viscous and resistive dissipation of magnetohydrodynamic waves. Phys. Plasmas 6 (1), 5765.Google Scholar
Campos, L. M. B. C. 2011 Complex Analysis with Applications to Flows and Fields, 1st edn. CRC Press.Google Scholar
Campos, L. M. B. C. 2014 Generalized Calculus with Applications to Matter and Forces, 1st edn. CRC Press.Google Scholar
Campos, L. M. B. C. & Gil, P. J. S. 1995 On spiral coordinates with application to wave propagation. J. Fluid Mech. 301, 153173.Google Scholar
Campos, L. M. B. C. & Isaeva, N. L. 1992 On vertical spinning Alfvén waves in a magnetic flux tube. J. Plasma Phys. 48 (3), 415434.Google Scholar
Copson, E. T. 1935 An Introduction to the Theory of Functions of a Complex Variable. Clarendon Press–Oxford University Press.Google Scholar
Cowling, T. G. 1957 Magnetohydrodynamics. Interscience.Google Scholar
Dwivedi, N. K., Kumar, S., Kovacs, P., Yordanova, E., Echim, M., Sharma, R. P., Khodachenko, M. L. & Sasunov, Y. 2019 Implication of kinetic Alfvén waves to magnetic field turbulence spectra: Earth’s magnetosheath. Astrophys. Space Sci. 364 (6), 101. doi:10.1007/s10509-019-3592-2.Google Scholar
Ellison, D. C., Möbius, E. & Paschmann, G. 1990 Particle injection and acceleration at earth’s bow shock: comparison of upstream and downstream events. Astrophys. J. 352, 376394.Google Scholar
Fedorov, E., Mazur, N., Pilipenko, V. & Engebretson, M. 2016 Interaction of magnetospheric Alfvén waves with the ionosphere in the Pc1 frequency band. J. Geophys. Res. Space Phys. 121 (1), 321337.Google Scholar
Ferraro, V. C. A. & Plumpton, C. 1958 Hydromagnetic waves in a horizontally stratified atmosphere. Astrophys. J. 127, 459476.Google Scholar
Ferraro, V. C. A. & Plumpton, C. 1966 An Introduction to Magneto-Fluid Mechanics, 2nd edn. Oxford University Press.Google Scholar
Forsyth, A. R. 1956 A Treatise On Differential Equations, 6th edn. Macmillan and Company Limited.Google Scholar
Foukal, P. V. 1990 Solar Astrophysics, 1st edn. Wiley-VCH.Google Scholar
Gordon, B. E., Lee, M. A., Möbius, E. & Trattner, K. J. 1999 Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J. Geophys. Res. Space Phys. 104 (A12), 2826328277.Google Scholar
Greifinger, P. 1972 Ionospheric propagation of oblique hydromagnetic plane waves at micropulsation frequencies. J. Geophys. Res. Space Phys. 77 (13), 23772391.Google Scholar
Hollweg, J. V. 1972 Supergranulation driven Alfvén waves in the solar chromosphere and related phenomena. Cosmic Electrodyn. 2, 423444.Google Scholar
Hollweg, J. V. 1978 Alfvén waves in the solar atmosphere. Solar Phys. 56 (2), 305333.Google Scholar
Jackson, J. D. 1975 Classical Electrodynamics, 2nd edn. Wiley.Google Scholar
Kellogg, O. D. 1953 Foundations of Potential Theory. Dover.Google Scholar
Knopp, K. 1990 Theory and Application of Infinite Series. Dover.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 The Classical Theory of Fields, 4th edn. Course of Theoretical Physics, vol. 2. Butterworth-Heinemann.Google Scholar
Lee, M. A. 1982 Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth’s bow shock. J. Geophys. Res. Space Phys. 87 (A7), 50635080.Google Scholar
Leonovich, A. S. & Mazur, V. A. 1991 An electromagnetic field, induced in the ionosphere and atmosphere and on the earth’s surface by low-frequency Alfvén oscillations of the magnetosphere. General theory. Planet. Space Sci. 39 (4), 529546.Google Scholar
Leonovich, A. S. & Mazur, V. A. 1996 Penetration to the Earth’s surface of standing Alfvén waves excited by external currents in the ionosphere. Ann. Geophys. 14 (5), 545556.Google Scholar
Leroy, B. 1980 Propagation of waves in an atmosphere in the presence of a magnetic field. Astron. Astrophys. 91, 136146.Google Scholar
Leroy, B. 1983 Propagation of Alfvén waves in an isothermal atmosphere when the displacement current is not neglected. Astron. Astrophys. 125, 371374.Google Scholar
Lighthill, M. J. 1960 Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Phil. Trans. R. Soc. A 252 (1014), 397430.Google Scholar
Lou, Y.-Q. 1994 Alfvénic disturbances in the equatorial solar wind with a spiral magnetic field. J. Geophys. Res. Space Phys. 99 (A8), 1474714760.Google Scholar
Lysak, R. L. 1997 Propagation of Alfvén waves through the ionosphere. Phys. Chem. Earth 22 (7-8), 757766.Google Scholar
MacMillan, W. D. 1958 The Theory of the Potential. Dover.Google Scholar
McKenzie, J. F. 1994 Interaction between Alfvén waves and a multicomponent plasma with differential ion streaming. J. Geophys. Res. Space Phys. 99 (A3), 41934200.Google Scholar
McKenzie, J. F., IP, W.-H. & Axford, W. I. 1979 The acceleration of minor ion species in the solar wind. Astrophys. Space Sci. 64 (1), 183211.Google Scholar
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids, 1st edn. Cambridge Monographs on Mechanics. Cambridge University Press.Google Scholar
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics, International Series in Pure and Applied Physics, vol. 1–2. McGraw-Hill.Google Scholar
Nocera, L., Leroy, B. & Priest, E. R. 1984 Phase mixing of propagating Alfvén waves. Astron. Astrophys. 133, 387394.Google Scholar
Nocera, L., Priest, E. R. & Hollweg, J. V. 1986 Nonlinear development of phase-mixed alfvén waves. Geophys. Astrophys. Fluid Dyn. 35 (1-4), 111129.Google Scholar
Oliver, R., Ballester, J. L., Hood, A. W. & Priest, E. R. 1993 Magnetohydrodynamic waves in a potential coronal arcade. Astron. Astrophys. 273, 647658.Google Scholar
Priest, E. R. & Heyvaerts, J. 1983 Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220234.Google Scholar
Rème, H. et al. 2001 First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19 (10/12), 13031354.Google Scholar
Scholer, M., Kucharek, H. & Trattner, K.-H. 1999 Injection and acceleration of H+ and He2+ at Earth’s bow shock. Ann. Geophys. 17 (5), 583594.Google Scholar
Schwartz, S. J., Cally, P. S. & Bel, N. 1984 Chromospheric and coronal Alfvénic oscillations in non-vertical magnetic fields. Solar Phys. 92 (1–2), 8198.Google Scholar
Stratton, J. A. 1941 Electromagnetic Theory. McGraw-Hill.Google Scholar
Velli, M. 1993 On the propagation of ideal, linear Alfvén waves in radially stratified stellar atmospheres and winds. Astron. Astrophys. 270, 304314.Google Scholar
Whang, Y. C. 1973 Alfvén waves in spiral interplanetary field. J. Geophys. Res. Space Phys. 78 (31), 72217228.Google Scholar
Whittaker, E. T. & Watson, G. N. 1996 A Course of Modern Analysis, 4th edn. Cambridge University Press.Google Scholar
Zhugzhda, Y. D. 1971 Low-frequency oscillatory convection in the strong magnetic field. Cosmic Electrodyn. 2, 267279.Google Scholar