Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T04:47:55.575Z Has data issue: false hasContentIssue false

Non-local theory of a transverse magnetic mode pumped free electron laser

Published online by Cambridge University Press:  01 October 2008

B. S. SHARMA
Affiliation:
Department of Physics, Government P.G. College, Kota-324001, India ([email protected])
N. K. JAIMAN
Affiliation:
Department of Physics, University of Kota-324010, India

Abstract

A non-local theory is used to study the effects of the corrugation parameter ε of a plasma-filled slow wave structure, the cyclotron frequency of a pumped magnetic field Ω and the relativistic gamma factor γ0 on the instability growth Γ of a free electron laser in the presence of an external finite axial magnetic field. The dispersion relation is derived and the growth rate is formulated in the Raman regime. The growth rate is approximately proportional to ε. There is a considerable decrease in the instability growth when the cyclotron frequency is close to ω0. The growth rate approximately scales inversely as the 19/2 power of the relativistic gamma factor.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Marshall, T. C. 1985 Free Electron Lasers. New York: Macmillan, p. 1.Google Scholar
[2]Liu, C. S. and Tripathi, V. K. 1994 Interaction of Electromagnetic Waves with Electron Beam and Plasma. Singapore: World Scientific, p. 81.Google Scholar
[3]Wurtele, J. S., Bekefi, G., Davidson, R. C. and Temkin, R. J. 1985 Bull. Am. Phys. Soc. 30, 1540.Google Scholar
[4]Danly, B. G., Bekefi, G., Davidson, R. C., Temkin, R. J., Tran, T. M. and Wurtele, J. S. 1987 IEEE J. Quantum Electron. QE-23, 103.Google Scholar
[5]Carmel, Y., Granatstein, V. L. and Grover, A. 1983 Phy. Rev. Lett. 51, 560.Google Scholar
[6]Balakirev, A., Miroshnichenko, V. I. and Iainberg, Ya. B. 1986 Sov. J. Plasma Phys. 12, 563.Google Scholar
[7]Tripathi, V. K. and Liu, C. S. 1988 Phy. Lett. 132, 47.Google Scholar
[8]Ivanov, S. T., Alexov, E. G. and Malinov, P. N. 1989 Plasma Phys. Control. Fusion 31, 941.CrossRefGoogle Scholar
[9]Maraghechi, B., Willett, J. E., Mehdian, H. and Aktas, Y. 1994 Phys. Plasma 1, 3118.CrossRefGoogle Scholar
[10]Carmel, Y., Minami, K., Kehs, R. A., Destler, W. W., Granastein, V. L., Abe, D. and Lou, W. L. 1989 Phys. Rev. Lett. 62, 2389.Google Scholar
[11]Jaiman, N. K. and Tripathi, V. K. 1994 Parametric up-conversion of TG and TM modes to a high frequency free electron laser. Radiophys. Quantum Electron. 37, 484 (special issue).Google Scholar
[12]Jaiman, N. K., Tripathi, V. K. and Srivastav, M. P. 1997 Phy. Plasma 4 (7), 2687.Google Scholar
[13]Kehs, R. A., Carmel, Y., Granatstein, V. L. and Destler, W. W. 1988 Phys. Rev. Lett. 60, 279.CrossRefGoogle Scholar